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Abstract

The employment of doubled-haploid (DH) technology in maize has vastly accelerated the efficiency of developing inbred
lines. The selection of superior lines has to rely on genotypes with genomic selection (GS) model, rather than phenotypes
due to the high expense of field phenotyping. In this work, we implemented ‘genome optimization via virtual simulation
(GOVS)’ using the genotype and phenotype data of 1404 maize lines and their F1 progeny. GOVS simulates a virtual genome
encompassing the most abundant ‘optimal genotypes’ or ‘advantageous alleles’ in a genetic pool. Such a virtually optimized
genome, although can never be developed in reality, may help plot the optimal route to direct breeding decisions. GOVS
assists in the selection of superior lines based on the genomic fragments that a line contributes to the simulated genome.
The assumption is that the more fragments of optimal genotypes a line contributes to the assembly, the higher the
likelihood of the line favored in the F1 phenotype, e.g. grain yield. Compared to traditional GS method, GOVS-assisted
selection may avoid using an arbitrary threshold for the predicted F1 yield to assist selection. Additionally, the selected lines
contributed complementary sets of advantageous alleles to the virtual genome. This feature facilitates plotting the optimal
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route for DH production, whereby the fewest lines and F1 combinations are needed to pyramid a maximum number of
advantageous alleles in the new DH lines. In summary, incorporation of DH production, GS and genome optimization will
ultimately improve genomically designed breeding in maize.
Short abstract: Doubled-haploid (DH) technology has been widely applied in maize breeding industry, as it greatly shortens
the period of developing homozygous inbred lines via bypassing several rounds of self-crossing. The current challenge is
how to efficiently screen the large volume of inbred lines based on genotypes. We present the toolbox of genome
optimization via virtual simulation (GOVS), which complements the traditional genomic selection model. GOVS simulates a
virtual genome encompassing the most abundant ‘optimal genotypes’ in a breeding population, and then assists in
selection of superior lines based on the genomic fragments that a line contributes to the simulated genome. Availability of
GOVS (https://govs-pack.github.io/) to the public may ultimately facilitate genomically designed breeding in maize.

Key words: plant breeding; Zea mays; genomic selection; genotype-to-phenotype prediction; computational simulation;
doubled haploid

Introduction
Crop improvement by selective breeding essentially depends on
the selection of advantageous alleles that express phenotypes
meeting the agricultural needs [1–3]. Pyramiding of the advan-
tageous alleles is usually implemented during population devel-
opment, in which breeding materials are hybridized with each
other so that the genomic fragments of the parental lines are
reshuffled via DNA recombination [4]. Thereby, the genotypes
and phenotypes of new lines are more diversified compared to
the original lines, offering genes for subsequent selection [5,
6]. Artificial selection of the desired phenotypes increases the
frequencies of rare but advantageous alleles or allele combi-
nations [7]. After multiple generations of selection, the maxi-
mum genetic gain is achieved when all possible advantageous
alleles are pyramided [8, 9]. The development of inbred lines
with homozygous genotypes is especially important for maize
F1-hybrid breeding, which mainly utilizes heterosis [10, 11].

Maize (Zea mays) is a worldwide cultivated staple crop as
an important source not only for human nutrition, but also
for livestock feed and biofuels. Sustainable growth of maize
yield is critical to ensure global food security. However, dra-
matic climate change has become unpredictable, and increased
frequency of extreme weather and natural disaster has greatly
impacted maize production. The seed industry expects innova-
tive informatics and biotechnology applied in maize breeding
to face these global challenges. Maize is one of the most suc-
cessful crops utilizing heterosis to cultivate F1 hybrids exhibiting
superior hybrid vigor in terms of grain yield, biomass and stress
resistance [12]. In a conventional program of maize breeding,
development of parental inbred lines is the major step that
impedes breeding efficiency, as 6–8 generations of self-crossing
are required to create pure inbred lines [13]. Owing to the speedy
development of the doubled-haploid (DH) technology in maize,
breeding cycles have greatly accelerated and the production of
the DH lines ready for hybridization, now, costs only a single
year [13, 14]. Thus, a mid-size breeding company may produce
tens of thousands of inbred lines per year, and the challenge
has shifted from developing lines to selecting lines. Although the
large volume of DH lines offers a great opportunity of selecting
superior lines pyramided with abundant advantageous alleles,
phenotype-based screening of all the lines through field trials
is time consuming, laborious and costly. To make line selec-
tion more affordable, one feasible solution is to apply genomic
selection (GS) that utilizes various genotype-to-phenotype (G2P)
predictive models to screen DH lines [15–22]. Then, only lines
predicted with high trait performance, usually 5–10% of the total
lines, are promoted to field trials.

In the modern seed industry, a standard pipeline of maize
hybrid breeding consists of three major sections, as illustrated in
Figure 1. The first section is developing a novel genetic pool or a
base population using a panel of elite lines as founders, namely,
population development. The goal of population development
is to generate superior lines pyramided with the maximum
advantageous alleles inherited from diverse founder parents [1,
23]. At the same time, the deleterious alleles should be removed
as much as possible via the artificial selection of desired phe-
notypes or adaptive selection using specific environments [24,
25]. The second section is line selection, in which the candidate
lines may be used as the maternal pool to cross with one or
two paternal testers to examine the phenotypes of their F1

progeny. By test-crossing, a panel of F1 is generated and the
ones exhibiting superior hybrid performances are identified. In
the third section, the selected superior lines are crossed with
a panel of paternal lines to obtain F1 combinations, and the
ones expressing the desired traits are selected. This helps in the
identification of the optimal paternal lines suited to be paired
with the maternal lines to produce the progeny with the desired
traits. With the incorporation of GS based on various genotype-
to-phenotype (G2P) predictive models into the above pipeline,
breeding efficiency is expected to further accelerate along with
a significant reduction in expenses of conducting field trials and
phenotyping the F1 hybrids.

Genotype-assisted selection of DH lines has become more
affordable nowadays, than it was in the past, due to the invention
of multiple cost-effective genotyping technologies, among which
genotyping by target sequencing (GBTS) is the most promising
technology suitable for plant breeding [26]. GBTS adopted two
main strategies—the first one is based on multiplexing PCR
(GenoPlexs) that may capture up to 5000 SNPs based on a panel of
predesigned primers to amplify the DNA fragments containing
the target SNPs [3, 27]; the second one uses a liquid chip to
capture target DNAs in solution (GenoBaits) that may cover up to
50 000 SNPs [3, 26]. Considering the balance of genotyping cost,
marker universality, and prediction accuracy, a panel of 3000–
5000 target SNPs is the optimal size for both genetic analysis and
G2P prediction in maize [26]. Additionally, the coverage of 500
Kb to 1 Mb per SNP in the maize genome is sufficient to trace
back the exchanged fragments among the DH lines generated
from each one of the F1 or F2 hybrids [28, 29]. This is because the
average rate of recombination events incurred in each DH line
is only half of that of the crossovers incurred in an F2 hybrid
[30]. Because of the same reason, genotypic and phenotypic
variants in a DH population may not be as rich as those in a
population developed by several generations of self-crossings.
Thus, screening of DH lines should not merely rely on phenotype
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Figure 1. The model of GOVS-assisted genomically designed breeding. The model consists of three major steps: first, novel base population called the CUBIC population

was developed from 24 founder lines; second, the 1404 F1 hybrids were generated by crossing the 1404 CUBIC lines with the tester line Zheng58, and GOVS was applied

to select superior lines; third, the selected superior lines were crossed with a panel of paternal lines to determine the optimal F1 combinations, finally resulting in a

significant improvement in grain yield compared to the original 24 founders.

prediction but should also include the estimation of recombi-
nation rate, tracing of the chromosomal crossover events and
determination of the optimal haplotypes of trait-associated frag-
ments. Using a combination of filtering criteria, the large amount
of DH lines may be narrowed down to a set of superior lines
affordable to perform field trial to assess the phenotypes of their
F1 progeny.

To meet these demands, a novel computational model
other than the G2P prediction is needed for efficient, large-
scale screening of DH lines. The model should be able to
perform the ‘genome optimization’ that we previously proposed
incorporating DH production, G2P prediction and genome
optimization to direct genomically designed breeding [8]. GOVS
presented in the current work refers to the employment of
computational algorithms to generate a virtually optimized
genome by assembling the genomic fragments featuring the
optimal genotypes of a desired trait. The optimal genome is
presumed to express optimal phenotypes. Although the so-
called ‘optimal genome’ may never be developed in reality, it
may function as an assembly of the favorable genotypes of all
trait-associated genes to direct breeding decisions in terms of
selecting superior lines and planning the next cycles of DH
production. It is worth noting that GOVS is not a substitute
for, but a complement to GS, and has multiple advantages over
GS. Firstly, as DH lines originate from the F1 or F2 hybrids of
the two parental lines, GOVS adopts the identity-by-descent
(IBD) analysis to infer the recombination events based on the
haplotypes of the SNPs within an exchanged fragment [8, 23];
then, the optimal genotype of each fragment contributing to a
target trait of F1 progeny is inferred. Secondly, GOVS assists in
the selection of superior lines based on the genomic fragments
that a line contributes to the virtually optimized genome,
rather than merely basing it on the predicted phenotypes.
Thirdly, GOVS plots the optimal route to pyramid the maximum
advantageous alleles from minimum number of lines and
times of crossing, since the superior lines selected by GOVS
contribute complementary sets of advantageous alleles in
known proportions to the optimal genome. Due to these
advantages, the genetic gain may be rapid using the fewest

breeding materials and the fewest events of hybridization, thus,
greatly accelerating the breeding efficiency. GOVS is publically
available at https://govs-pack.github.io/.

Methods
Construction of the bin map for the CUBIC population

The development of the complete-diallel plus unbalanced
breeding-derived inter-cross (CUBIC) population from the 24
founders, SNP calling from the resequencing of the 1458 inbred
lines, and the inference of the initial 24 720 bins via IBD analysis
were previously described [23, 31]. The data were obtained from
http://zeamap.hzau.edu.cn/ftp/99_MaizegoResources/01_CUBI
C_related/. The original 4.5 million SNPs were highly redundant
and may have decreased the computing efficiency. We, then,
screened the SNPs in five steps—first, the function of ‘indep’
in PLINK [32] was applied and a total of 45 576 tag SNPs were
identified; second, the SNPs located in the highly repetitive
regions of the maize genome according to Tarailo-Graovac and
Chen [33] were removed; third, the SNPs with minor allele
frequency (MAF) between 0.15 and 0.35 were retained; fourth,
50-nt flanking sequence on each side of an SNP (101-nt in
total) were aligned to the reference genomes of multiple elite
inbred lines that are available on MaizeGDB [34], and only the
SNPs residing in highly conserved regions were retained. As a
result, the final set obtained after stringent filtration contained
4903 SNPs, which may be used as a universal panel of SNPs for
the GenoPlexs platform to reduce the expense of genotyping.
Based on the 4903 SNPs, the phylogenetic tree of the 24 founders
was constructed using the unweighted neighbor-joining method
using MEGA software [35]; the population structure of the 900
F1 hybrids (30 maternal × 30 paternal lines) was analyzed using
principal component analysis (PCA) function of the ‘sklearn’
package [36] of Python (https://www.python.org/). The 4903
SNPs were further mapped to the original 24 720 unique bins
identified using IBD analysis, resulting in the identification of
3515 bins that represented the recombinant fragments in the
maize genome.
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Collection and processing of phenotype data of the F1
hybrids

The three main agronomic traits, namely the days to tasseling
(DTT), plant height (PH) and ear weight (EW), were phenotyped
for the 1404 F1 progeny of Zheng58, and the 900 F1 combinations
at five different locations, which were Yushu (Jilin Province,
N43◦42′, E125◦18′), Shenyang (Liaoning Province, N42◦03′,
E123◦33′), Beijing (N40◦10′, E116◦21′), Baoding (Hebei Province,
N38◦39′, E115◦51) and Xinxiang (Henan Province, N35◦27′,
E114◦01′) in Northern China. The phenotypes were collected
from unreplicated trial with checks in which 20 individual plants
of each F1 hybrid were planted in a row. The check variety
of ZhengDan958 resulting from the crossing of Chang7-2 and
Zheng58 was planted in every 50th rows, which was used for
the correction of spatial heterogeneity in the field. The average
phenotype of five well-pollinated ears in the middle of each
row was calculated to avoid the edge effect of the plot. To
remove the environmental influence, the mixed linear model
from the R package ‘lme4’ [37] was used to estimate the best
linear unbiased prediction (BLUP) value for each F1 hybrid
summarized from the five locations using the following the
model: yij = μ + αi + βj + εij, where yij is the observed value of
the ith line in the jth environment, μ is the overall average, αi is
the effect of ith line, βj is the effect of jth environment and εij is
the random error. Here, both αi and βj are assumed to be random

effects, in which αi ∼ N
(
0, σ 2

α

)
and βj ∼ N

(
0, σ 2

β

)
. The BLUP values

for each phenotype were then used for subsequent analyses.
The general combining ability (GCA) of the 30 paternal lines was
calculated using the BLUP values of the 900 F1 hybrids using the
formula: GCAi = yi• − y••, where yi. is the mean phenotype of the
F1 progeny resulting from crossing with the paternal line i, and
y•• is the mean phenotype of all the 900 F1 progeny. The field trial
of the 80 selected F1 combinations was performed in Sanya in
the Hainan Province. Seven individuals of each F1 combination
were planted in 3 rows, and, thus, 21 phenotype data points were
collected for each F1 combination. Three commercial cultivars,
namely ZhengDan958, XianYu335, and JingKe968 were used
as check varieties, which were planted in every 15 rows and
105 repeats to calibrate the bias in the same plot of the 80 F1

combinations.

Detection of superior lines by the G2P and GOVS
methods

We adopted two ways to validate the availability of GOVS-
assisted selection and to compare the precision between the
G2P and GOVS methods. In the first way, the 1404 lines were
evenly divided into training and testing sets. Superior lines
were defined as the maternal lines that were crossed with
the paternal tester Zheng58 and generated F1 EWs surpassing
the EW (243.98 g/ear) of the check (CK) ZhengDan958 variety.
Thus, detection rate of superior lines was used to represent the
precision of selection. To minimize the bias potentially caused
by different enrichments of superior lines in training and testing
sets, the 1404 lines were randomly split to 702 training and 702
testing samples for 20 times, and the number of superior lines
was counted at each time. Then, the time of sample division
generating the number of superior lines closest to the average
number of the 20 times was used as the final division of 702
training and 702 testing samples. To test the precision of G2P,
the F1 EWs and genotypes of the 702 training lines were used
to train the rrBLUP model, followed by predicting the F1 EWs of
testing lines based on their genotypes. In the second way, we

adopted a repeated holdout method of cross-validation with a
different way of sample division to compare the precision of G2P
and GOVS-assisted selection. In this way, the 1404 lines were
randomly divided to training and testing sets with a ratio of
2:1 (936 versus 468). Then, the F1 EWs of the 468 testing lines
crossed with Zheng58 were predicted using the rrBLUP model
trained with the F1 EWs and genotypes of the 936 training lines,
followed by applying GOVS on predicted F1 EWs of testing lines
to build the virtually optimized genome. Selection of superior
lines assisted GOVS was based on the number of contributed
bins. To compare the detection rates of superior lines by the
two methods, we counted the numbers of actual superior lines
among the top 5% (23), 10% (47) and 15% (70) lines out of the
468 testing lines sorted based on the predicted F1 EWs and
contributed bins by the G2P and GOVS methods, respectively. The
above process was repeated for 10 times to generate 10 detection
rates for each method. Then, a paired t-test was performed to
test the significance of the difference between the 10 detection
rates by G2P-assisted and GOVS-assisted selection of superior
lines.

Implementation of GOVS in R

We developed an R package—GOVS (https://govs-pack.githu
b.io/), which stands for Genome Optimization via Virtual
Simulation—to assist genomically designed breeding for
maize, including three modules for virtual simulation of the
optimal genome and one module for G2P prediction. Four
input files are required for GOVS, including phenotype and
genotype files of a population, and two bin files containing
the recombinant hotspots of the population. One of the two
bin files should contain the genomic fragments identified using
the IBD algorithm to trace the origins of the bins back to the
parental lines [23, 38], and the other one is an annotation
file of the bins used to indicate the recombination hotspots.
The first module ‘genomeOptimization’ simulates the optimal
genome statistically using the ‘optimal genotypes’ associated
with the ‘optimal phenotypes (i.e., grain yield of F1 hybrids)’
using LSMEANS on the haplotype of each bin instead of
the genotype of individual SNP. Based on the results from
the ‘genomeOptimization’ module, the optimal genotypes
of the SNPs mapped to the bins were extracted from the
population, and were consecutively assembled to simulate an
optimal genome using the second module ‘extractGenome.’
It has to be noted that, the optimal genome only represents
a theoretical assembly of advantageous alleles but cannot
be developed in reality, due to genetic drag, meaning that
linkage of certain advantageous and deleterious alleles may
never be disrupted [39]. The resulting optimal genome and
the associated information is then made available to the third
module ‘statDesign’ to perform statistical analysis on the lines
contributing genomic fragments. The lines are ranked based
on their contribution of genomic fragments to the assembly
of the optimal genome. The top-ranked lines are selected on
priority for further crossing with more paternal lines apart from
the tester line. The GOVS package also includes two popular
G2P models, ridge regression best linear unbiased prediction
(rrBLUP) and genomic best linear unbiased prediction (gBLUP)
[40], which can be called using the functions of ‘SNPrrBLUP’ and
‘GBLUP,’ respectively. Additionally, GOVS supplies a convenient
toolkit to convert the character format of genotype data to
numeric codes of 0, 1 and 2 representing the homozygous major
alleles, heterozygous alleles and homozygous minor alleles,
respectively.
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Results
The rationale of genome optimization via virtual
simulation

To test genomically designed breeding using the proposed model
of GOVS, we obtained the previously published dataset of the
1404 CUBIC lines and considered it as the maternal pool and
their F1 progeny resulting from crossing with Zheng58—a pater-
nal tester commonly used in China [41]. The details of the
CUBIC population and the related data on the F1 progeny of
the CUBIC lines and Zheng58 were presented elsewhere [23,
42]. The 24 founders used to develop the CUBIC population
were selected from three main heterotic groups widely used
in China, namely the SiPingTou (SPT), LvDaHongGu (LDHG) and
ZI330 (Z330) (Figure S1). Therefore, the CUBIC population may be
regarded as a pool of advantageous alleles adapted to the dif-
ferent local environments in China. In addition, ZhengDan958,
which is the F1 progeny of Zheng58 and Chang7-2 (one of the
24 founders), was used as the check variety in the current work
[41]. The EW of ZhengDan958 was used as the threshold to
determine the superior F1 hybrids, which is a stringent crite-
rion commonly used in real-world breeding practices [41, 43].
The yield of ZhengDan958 was used for the evaluation of the
precision of prediction by identifying the F1s with observed EWs
surpassing the threshold among the highly ranked F1s predicted
by GS or GOVS. The crossings of the 24 founders with Zheng58
showed only four F1 combinations surpassing the threshold of
EW of ZhengDan958 (Figure S2). More F1 combinations with the
potential of being new cultivars surpassing the threshold of the
EW of ZhengDan958 were expected since the CUBIC population
contained superior lines pyramided with more advantageous
alleles than the 24 founders. Thus, the purpose of this work was
to identify these lines via the proposed model of GOVS.

The availability of the genotypes of the 24 founders and 1404
CUBIC lines allowed us to computationally trace the inheritance
of a designated genomic fragment back to the founders. Using
phenotypes, the genetic effect of the genomic fragment may be
further quantitatively determined in terms of its contribution to
its F1’s yield. In the current article, the genomic fragments are
defined as ‘bins,’ which are segmented regions of a chromosome,
resulting from chromosomal recombination during population
development. The method of bin inference from the CUBIC pop-
ulation was described in Liu et al. [23]. Using a genome-wide
scan, the positive and negative associations between bins and
F1 yields were inferred statistically. The bins contributing pos-
itive effects to F1 yield were defined as advantageous alleles
with optimal genotypes and those exhibiting negative effects
were defined as deleterious alleles. Subsequently, the haplotype
of a bin exhibiting the highest positive association with EW
was extracted from the corresponding F1 hybrid. The optimal
genotypes of all the bins were assembled to simulate a virtually
optimized F1 genome. The simulated genome encompassed all
the advantageous alleles favoring F1 yield, thus, theoretically
expressing the optimal phenotype. It has to be noted that the
simulated genome may never be developed in reality but may
represent the maximum potential of genetic gain that a genetic
pool of advantageous alleles can possess.

The algorithm of GOVS used to assemble a virtually
optimized genome

We used the genotype and phenotype data of the 1404 F1 progeny
of the CUBIC lines crossed with Zheng58 tester to implement
GOVS. The genotype data included 4903 SNPs selected from
the 4.5 million SNPs detected from the previously published

whole-genome resequencing of the 1404 CUBIC lines, 24 founder
lines and 30 paternal testers [23, 42]. The 4903 SNPs represented
a variation atlas of the 3515 bins in the maize genome with the
least redundancy and ensured an optimal balance of genotyping
expense and variation coverage. Detailed methods of SNP
filtration and the construction of the bin map are described
in the Methods. The phenotype data included DTT, PH and EW
representing the three main agronomic traits of flowering time,
plant stature and grain yield, respectively, at the three important
developmental stages.

The algorithm of GOVS is illustrated in Figure 2. A bin map
dividing the maize genome into 3515 segments was first con-
structed using IBD analysis based on the genotypes of the 1404
CUBIC lines and 24 founder lines (Figure 2a). The bin map essen-
tially represented the hotspots of chromosomal recombination
incurred during the development of the CUBIC population. Each
bin of a line was coded by one of 24 colors to indicate its origin
(one of the 24 founders). This means that the origin of a bin
contributing positive effect to the F1’s phenotype, such as the
maximizing EW used as an example for the current work, may
be traced back to determine the corresponding founder as well
as the optimal haplotype associated with the bin. This proce-
dure is illustrated using the Bin-1758 located at Chromosome
5: 3 670 776–3 770 999 in Figure 2b. There were 22 groups of
haplotypes associated with Bin-1758, indicating that 22 founders
contributed fragments to the CUBIC population, except TY4 and
QI1261. One possible reason is that the genotypes of Bin-1758
in TY4 and QI1261 might be deleterious to the fitness, and
thus, were eliminated via artificial selection. Using the 22 bin
haplotypes, the 1404 lines were then categorized into 22 groups,
which were subsequently used to infer the optimal genotypes
positively affecting the EWs of F1s. The inference was based
on the results of least-squares means (LSMEANS) across the 22
haplotypic groups from a general linear model. The 22 groups
were then sorted from high to low based on the LSMEANS of the
corresponding group. The genotypes of the SNPs in Bin-1758 from
the line exhibiting the highest EW in F1 in the topmost group
were extracted and then placed at the corresponding bin location
in the maize genome (Figure 2c). After genome-wide scanning
using LSMEANS, the optimal genotypes of the 3515 bins were
determined and assembled as a virtually optimized genome
according to their locations in the maize genome. Similarly,
GOVS may also be used to select the genotypes of Bin-1758 with
moderate and the least effects on the F1’s EW. Therefore, three
types of virtual genomes may be simulated with optimal, mod-
erate and poor genotypes. Using the genotypes and observed
phenotypes of the 1404 F1 hybrids as a training set, the optimal,
moderate and poor phenotypes of the three virtual genomes can
be predicted using the G2P model (Figure 2d).

To test the computing efficiency of the GOVS algorithm, we
performed a series of benchmark tests by simulating different
numbers of samples, SNPs and bins on a server with configu-
ration of four 16-core CPUs (E7-4850 v4 @ 2.10GHz) and 1 TB
memory (Table S1). When genotype data were fixed by 1000 SNPs
and 1000 bins, GOVS spent only 35 min and consumed 22.5 GB
memory to finish computing on 50 000 samples. When 1000 bins
and 1000 samples were fixed, GOVS spent 4 and 5 min on 1000
SNPs and 100 000 SNPs, respectively. It indicates that GOVS is
not sensitive to the number of SNPs, because the SNP data are
only used when assembling the virtual genome with the optimal
genotypes of SNPs. When 1000 samples and 30 000 SNPs were
fixed, CPU times and memory usage gradually increased along
with the increased number of bins from 4 min and 1.2 GB on
1000 bins to 155 min and 16.2 on 30 000 bins. Thus, the number
of bins is the limiting factor of computing efficiency, as GOVS
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Figure 2. Schematic illustration of the algorithm of GOVS. (a) The bin map of the 1404 CUBIC lines exemplified by chromosome 5. Each of the 24 founders was represented

by a color and each bin was then coded by one of the 24 colors. (b) The identification of the optimal haplotype of Bin-1758 associated with a higher yield in the F1

hybrids. The Bin-1758 possessed 22 types of haplotypes that could be traced back to the 22 founder lines. Thus, the 1404 lines were categorized into 22 groups, which

were sorted by the average EW of their F1 progeny. The topmost group showed the highest average EW compared to the rest of the groups. The genotypes of the SNPs

mapped to Bin-1758 of the line with the highest EW in this group were defined as the optimal genotypes. (c) The optimal genotype of Bin-1758 was extracted and

assembled with the optimal genotypes of other bins to generate a simulated genome. This procedure may also be used to generate moderate and poor genomes by

extracting the moderate and poor genotypes of the Bin-1758. (d) G2P prediction was then used to predict the phenotypes of the simulated optimal, moderate and poor

genomes using the actual genotypes and phenotypes of the 1404 CUBIC lines to train the model.

bin-by-bin scans the genome to infer the genetic contribution of
a bin towards the trait.

G2P-assisted selection based on predicted phenotypes

One of the functions of GOVS is to assist in selecting superior
lines based on the bins contributed by a line, rather than merely

relying on the predicted phenotype derived from a G2P model.
We first tested the precision of G2P-assisted selection of superior
lines whose F1 progenies exhibited high EWs using the rrBLUP
model [40]. The 1404 F1s were divided into training and test
datasets, each containing 702 samples (Methods). Using the EW
(243.98 g/ear) of ZhengDan958 as the threshold, 133 (9.47%), 62
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Figure 3. Partition of training and testing datasets. (a) The distribution of the observed EW of the total 1404 F1 hybrids of which 9.47% F1s surpassed the threshold

of the EW of ZhengDan958. (b) The distribution of the observed EW of the 702 F1 hybrids from the training set of which 8.83% F1s surpassed the threshold of EW of

ZhengDan958. (c) The distribution of the observed EW of the 702 F1 hybrids from the test set of which 10.11% F1s surpassed the threshold of EW of ZhengDan958. (d)

The distribution of the predicted EW of the 702 F1 hybrids from the test set of which 10.97% F1s surpassed the threshold of EW of ZhengDan958.

(8.83%) and 71 (10.11%) F1s out of the total 1404 samples, 702
training samples and 702 test samples, respectively, surpassed
the threshold (Figure 3a-c). These percentages indicated that
the average selection rate of the superior lines from the CUBIC
population was ∼10%. We then predicted the EWs of the 702
F1s in the test dataset using the genotype of ZhengDan958 as
a spike-in sample for determining the threshold. Out of the
702 test samples, the predicted EWs of 77 (10.97%) samples
surpassed the threshold (Figure 3d). The overall precision was
0.488, which was the Pearson’s correlation coefficient (r) between
the predicted and observed EWs (Figure S3a). However, only 20
samples were common when comparing the top 77 and top
71 samples with the predicted and observed EWs, respectively
(Figure S3b). Therefore, the actual selection precision was only
28.17% (20/71), indicating that G2P-assisted selection may enrich
the superior lines by about ∼2.8 times compared to a random
selection of 70 out of the 702 test samples.

GOVS-assisted selection based on contributed bins

GOVS employs an alternative strategy to assist in line selection,
using prediction results from G2P, and does not merely rely on
an arbitrary threshold to select top predictions. Simply speaking,
GOVS determines whether a line is superior based on the num-
ber of bins it contributes to the simulated genome, by assuming
that the number of bins with optimal genotypes of a line is pos-
itively correlated with the abundance of advantageous alleles it

possesses; thus, the F1 progenies of the lines contributing a high
proportion of bins have a high likelihood of expressing optimal
phenotypes. To test this assumption, we first applied GOVS to
the 702 training samples. Statistics on the bin composition of
the simulated genome showed that the top 3 lines contributed
complementary sets of bins or genomic fragments accounting for
8.43%, 8.21% and 5.74% of the total bins, respectively. The EWs of
their F1 progeny were also ranked as the top three among the
702 training samples. When the number of top lines ranked by
the contribution of bins increased to 12, 38 and 170 samples, the
cumulative percentage of bins achieved 10%, 80% and 100% of
the simulated genome, respectively. When the selection thresh-
old was 10% (70/702), the cumulative percentage achieved was
91.85% (Figure 4a). The examination of the haplotypes of the
bins that the 170 superior lines contributed allowed us to trace
their origins to the founders. The top 8 founders included all
four lines from Z330 and four from SPT groups, contributing bins
accounting for 65.84% of the genomic coverage of the 170 lines.
The top two founders, namely HUANGC and ZONG31 from the
Z330 group, contributed 15.09% and 13.14% bins, respectively.

The F1 progenies of the 170 lines identified using GOVS
mostly exhibited higher EWs than the rest of the 532 lines
contributed zero bins (Figure 4b). It was, therefore, reasonable
to presume that GOVS may assist in the selection of supe-
rior lines, and it was tested using the 702 test samples. The
EWs of the F1 progeny of the 702 test samples were first pre-
dicted using the rrBLUP model trained with the genotypes and
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Figure 4. GOVS-assisted selection based on contributed bins. (a) The percentage of the 24 founders contributing genomic fragments with optimal genotypes to the

optimal genome simulated using the genotypes of the F1 progeny of the 702 training samples crossed with Zheng58. The inner box shows that 12, 38 and 170 lines

contributed 50%, 80% and 100% fragments, respectively, to the simulated genome. (b) The lines contributing higher fractions of fragments also showed a higher yield

in their F1 progeny based on the analysis of the 702 training samples. (c) Comparison of the numbers of superior lines surpassing checks identified by GOVS and G2P

methods. The numbers in the brackets are the average numbers of corrected superior lines among the top 5%, 10% and 15% lines with predicted values resulted from

the 10 times of holdouts. (d) Comparison of the average percentages of superior lines surpassing checks identified by GOVS and G2P methods.

observed EWs of the 702 training samples. GOVS, then, assem-
bled the virtually optimized genome based on the predicted
EWs. Out of the 702 test samples, 158 contributed bins with
optimal genotypes, among which the top 8, 26 and 158 lines
cumulatively contributed 50%, 80% and 100% bins to the sim-
ulated genome, respectively. Using the selection threshold of
10%, 95.74% of the simulated genome was achieved (Figure S4a).
Similar to the results from the training samples, the F1 progenies
of the selected lines mostly showed higher EWs compared to
those of the unselected lines (Figure S4b). Additionally, out of the
top 8 founders identical in both training and test samples, 38.23%
of the genomic context of the superior lines was traced back to
the four Z330 founders indicating the importance of the Z330
group in forming the superior hybrids in the CUBIC population.

In contrast, the four founders in LDHG and 16 founders in STP
contributed 11.95% and 49.82% of the genomic context in the
CUBIC population, respectively.

Finally, we compared the precision of selecting superior lines
assisted by G2P and GOVS. A repeated holdout method was per-
formed for cross-validation (Methods). Averaged numbers and
percentages of superior lines surpassing checks from the 10 time
of holdouts were computed at selection rates of top 5%, 10% and
15% from the list of testing samples sorted by the G2P and GOVS
methods based on predicted phenotypes and contributed bins,
respectively. As shown in Figure 4c and d, selection precision of
GOVS was slightly better than that of G2P, but the difference was
not significant according to the comparison of the two methods
by paired t-test. Therefore, we may conclude that precision of
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GOVS-assisted selection of superior lines is comparable to that
of G2P-assisted selection.

Since the feasibility of GOVS-assisted selection of superior
lines was validated, we applied GOVS using the EWs of the
1404 F1 progeny to generate a virtually optimized genome. Out
of the 1404 CUBIC lines, 253 (18.02%) superior lines were selected
using GOVS that contributed bins with optimal genotypes to the
simulated genome. The 253 superior lines selected by GOVS were
then considered as the new genetic pool enriched with advan-
tageous alleles expressing a higher yield than the unselected
lines, among which 45.8% (116 out of 253) featuring high F1 EWs
surpassing the check (Figure S4c).

Selection of the optimal paternal lines to generate F1
combinations

Since the selection of the 253 superior lines assisted by GOVS
was based on test-crossing with only one paternal line Zheng58,
the next step was to select optimal paternal lines that may
generate superior F1 combinations to further improve the grain
yield of hybrid maize. This may be implemented via the selection
of a subset of lines from the 253 superior lines to cross with
a panel of paternal lines from diverse genetic backgrounds, so
that optimal heterotic progeny from different heterotic groups
may be obtained. Therefore, 30 out of the 253 selected CUBIC
lines were crossed with 30 paternal lines from the six major
heterotic groups to generate 900 F1 combinations (Figure S5). The
three traits DTT, PH and EW of the 900 F1 combinations were
measured at five different locations. With the phenotype data,
the GCA of EW for each paternal line was computed based on the
corresponding set of the 30 F1 progeny, and the resulting paternal
GCA was used as a reference for selecting optimal paternal lines
(Methods). The thirty sets of F1 progeny were ranked using the
paternal GCAs, and a line exhibiting high paternal GCA indicated
a high probability of generating superior F1 combinations if it
were to be crossed with the 253 CUBIC lines (Figure 5a). The
top five paternal lines were MG1533, MG1534, MG1543, MG1546
and MG1548 that generated 20, 17, 18, 14 and 9 F1 combinations,
respectively, out of the 30 F1s in each set that surpassed the EW of
ZhengDan958. GCA of the tester Zheng58 was ranked at the 11th
position, and 10 of its 30 F1s surpassed the threshold. It is worth
noting that ZhengDan958 is a compact cultivar featuring a short
plant stature and early flowering time suited for mechanical
harvesting [44]. Thus, the yield per plant is not the top priority for
ZhengDan958, as increasing the density of plants may improve
the overall yield per unit due to its compact structure. Among
the top 5 paternal lines, F1s of MG1548 from the Reid group
exhibited a significantly reduced PH (P = 0.023), slightly short-
ened DTT (P = 0.365), and an improved EW (P = 0.049) compared
to the F1s of Zheng58 (Figure 5b). Thus, MG1548 was selected
for generating F1 combinations in the field trial. F1s of MG1533
showed average PH and DTT but the highest EW, compared to the
other five sets of F1s. Thus, MG1533 was also selected. MG1534
and MG1543 with similar GCAs showing comparable DTT, PH
and EW, belonged to the X-population. Nevertheless, MG1534
showed better pathogen resistance than MG1543 according to
empirical evidence from breeders. Thus, MG1534 was selected.
Finally, 40, 20 and 20 lines were randomly selected from the
223 untested superior lines to cross with MG1533, MG1534 and
MG1548, respectively, resulting in a total of 80 F1 hybrids selected
for validation through field trial.

Results from the field trials of the 80 F1 hybrids

The 80 F1 hybrids were successfully harvested and the EW, grain
weigh and water content measured. Three commercial cultivars

widely planted in China, namely ZhengDan958, XianYu335 and
JingKe968, were used as spike-in check varieties for the 80 F1

hybrids during the field trial. As for the phenotype of EW, 73, 16
and 7 F1 hybrids out of the 80 combinations surpassed the EWs of
ZhengDan958, XianYu335 and JingKe968, respectively (Figure 6a).
As for the grain weight, the numbers of F1s surpassing the
three thresholds were 72, 9 and 1, respectively. (Figure S6). By
far, the pipeline of selecting maternal lines, paternal lines, and
generating superior F1 combinations via the model of GOVS was
demonstrated using the CUBIC population.

The 253 selected inbred lines exhibited insignificant but
slightly higher EWs than the 1151 unselected lines (Figure S7);
whereas, their F1 progeny with Zheng58 exhibited significantly
elevated EWs compared to the F1 progeny of the unselected
lines (Figure 6b). Furthermore, compared to the average EW
(223.2 g/ear) of the 24 F1 hybrids resulting from crossing the
24 founders with Zheng58, a 9.18% increment in the F1 yield
was achieved (average EW 244.1 g/ear) for the 253 superior lines
selected from the 1404 samples (Figure 6b). It is worth noting
that the EWs of the 1151 F1s showed almost no differences
when compared to the F1s of the 24 founders. It explicitly
suggested that the genes contributed by the 253 selected lines
played an important role in generating superior hybrids for
yield, and GOVS successfully identified these heterotic bins. The
selection of paternal lines via GCA analysis further validated
the importance of the bins in generating heterotic varieties,
reflected by the significantly elevated EWs of the 80 F1 progenies
of MG1548, MG1533 and MG1534 compared to the F1 progenies
with Zheng58. Therefore, the effectiveness of the GOVS strategy
in terms of accelerating genetic gains and establishing heterotic
patterns was validated.

Discussion
GOVS improves genomically designed breeding in
maize

The fast advancement in the DH technology has vastly
accelerated the production of inbred lines of maize [14, 45, 46].
For each of the F1 and F2 combinations, two to five hundreds
of inbred DH lines need to be generated to ensure sufficient
exchanges of parental alleles [8]. A mid-sized seed company
may regularly produce several tens to hundreds of thousands
of DH lines per year, as DH production is applied on hundreds
of hybrid combinations in parallel. Thus, precise and efficient
screening of DH lines at a lower expense is in great demand. GS
based on various G2P predictive models have been incorporated
in the modern breeding pipeline to assist the screening of lines
but the precision of prediction of the yield is still not satisfactory
since crop yield is a complicated polygenic trait influenced
by several factors [1, 8, 16, 18, 47–49]. In the current work,
we implemented the previously proposed model of GOVS [8].
GOVS was developed and tested using the previously published
genotype and phenotype data of the CUBIC population and their
1404 F1 progeny [23, 42]. The results from the field trial of 80 F1

combinations selected using GOVS further verified the feasibility
of this strategy. It also should be noted that GOVS is not a sub-
stitute for, but a complement to GS-assisted selection, as it may
better interpret and utilize the results from G2P prediction to
direct breeding decisions. One of the main differences between
GS and GOVS is that, while GS-assisted selection is based on the
predicted phenotype using an arbitrary threshold, GOVS selects
lines based on the number of bins that a line contributes to the
assembly of optimal genome. Moreover, the lines selected by
GOVS possess complementary sets of bins, and this information
may be used to direct next round of crossing to further pyramid
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Figure 5. Determination of the optimal paternal lines. (a) The thirty sets of F1 hybrids were ranked according to the paternal GCA of EW computed based on the 30

sets of F1 combinations resulting from crossing the 30 CUBIC lines with each one of the 30 paternal lines. (b) Comparison of DTT, PH and EW of the six sets of F1

combinations to facilitate the determination of the optimal paternal lines.

Figure 6. The result of the field trial of the 80 F1 combinations. EW of 73, 16 and 7 out of the 80 F1 combinations surpassed the threshold of EW of cultivars Zheng958,

XianYu335 and JingKe968, respectively. (a) Genetic improvement in EW reflected by the four populations of the F1 progeny.

advantageous alleles. Therefore, GOVS may theoretically accel-
erate the progress of genetic gain with fewer numbers of lines
and cycles of hybridizations compared to traditional GS method.

Maize is one of the crops that mainly utilizes heterosis [50,
51]. The heterotic pattern established between the maternal
and paternal groups is extremely important and should
not be ignored when incorporating GOVS and GS into the
DH-empowered breeding pipeline. Thus, pyramiding of the
advantageous alleles in the maternal and paternal groups needs
to be performed separately, so that the fixed heterotic patterns
are maintained. In other words, DH production should be strictly
applied to the F1 and F2 hybrids generated by crossing the
lines within each group but not between groups. To minimize
the times of crossing and to achieve maximum pyramided
advantageous alleles using the fewest lines, the precise selection
of the lines carrying complementary sets of advantageous alleles
is essential. GOVS offered such precision using the statistics
on the genomic context of the virtually optimized genome,

which may facilitate the selection of lines with complementary
advantageous alleles to generate hybrids to be sent for DH
production. According to our analysis, the selection of dozens
of top lines contributing a high proportion of bins may help
achieve an ideal coverage of the genome (Figure 4a). Briefly,
with the advantages of GOVS illustrated in the current work,
it is foreseeable that the integration of DH production, G2P
prediction and GOVS may ultimately improve genomically
designed breeding for maize.

GOVS reveals basic principles of maize hybrid breeding

GOVS is not only a useful tool to assist data-driven decision-
making but may also reveal multiple basic principles of maize
hybrid breeding. Tracing the origins of the optimal haplotypes
of bins to the 24 founders revealed that the top eight founders
contributed almost two thirds (66.03%) of the bins to the 253
superior lines, among which, four lines from the Z330 group
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Figure 7. Basic principles of maize hybrid breeding. (a) The percentages of the selected and unselected lines whose EW of F1 progenies are larger than the cutoffs of

250, 240 and 230 g/ear. (b) The predicted phenotypes of EW using the genotypes of the simulated optimal, moderate and poor genomes. The G2P model was trained

using the observed phenotypes and the actual genotypes of the 1404 F1 hybrids.

contributed 39.11% of the bins (Figure S8). These four Z330 lines
were developed between the 70s and 90s in China, and they
are rarely used nowadays in China. Except for HUANGC, whose
F1 progeny with Zheng58 surpassed the EW of ZhengDan958
(Chang7-2 × Zheng58), the progeny of the other three lines did
not (Figure S2). The possible explanation is that the genetic
contexts of the Z330 group may represent a general fitness in
the local environments in China, although they do not show
superior F1 yield [52]. Nevertheless, due to the general fitness
they showed in the new CUBIC population, pyramiding of the
advantageous alleles from other founders may lead to better
performance and form a better genetic complement to the pater-
nal alleles [23]. Thus, it potentially suggested a basic principle
for selecting founder lines when planning on creating novel
germplasm, which is to include elite lines adapted to the local
environment rather than basing your results only on yield. In
addition, it also suggested that the indigenous germplasm is
of great value offering broader adaptability to the environment
when breeding new cultivars. Thus, even though the germplasm
resource may not be used, nowadays, in the breeding industry, it
is still worth using it to exploit the advantageous alleles for the
improvement of maize.

Overall, the F1 yields of the selected lines were significantly
greater than those of the unselected lines, especially for those
top-ranking lines contributing a substantial amount of bins. For
instance, among the 59 hybrids with EWs over 250 g/ear, 55
(93%) lines contributed bins to the simulated genome; among
the 216 hybrids with EWs over 240 g/ear, 171 (79%) contributed
bins (Figure 7a). The 55 and 171 lines accounted for only 3.9% and
12.2%, respectively, of the 1404 lines. Thus, it indicated that the
pyramiding of the selected superior lines with maximum com-
binations of the advantageous alleles is a low-probability event,
similar to breeding, which is an arduous and time-consuming
task. So far, only yield has been considered and the other traits
and stress resistance have not. To further pyramid advantageous
alleles that cover other traits, the only solution is to continu-
ously enlarge population size, so that recombination may break
the linkage between the advantageous and deleterious QTLs
[4, 5, 42].

A significant correlation (Pearson’s correlation coefficient,
r = 0.713) was observed between the F1 yields of the 58 superior

lines and the number of bins they contributed (Figure S9). This
correlation suggested an important role of the additive effect of
the advantageous alleles, consistent with the previous report in
rice that heterosis is a result of pyramiding advantageous alleles
contributed from both parental genomes [5, 39, 53, 54]. However,
the simulated genome representing an assembly of advanta-
geous alleles favoring a higher yield explained about 84% of the
total genetic effect of heterosis. This proportion was deduced
based on the optimal phenotype predicted using the optimal
genotype of the simulated genome, which was positioned at the
83.9th percentile of the observed EW distribution of the 1404 F1

hybrids (Figure 7b). The rest 16.1% may be explained by the
genotype-by-environment (G × E) interaction [55, 56]. Thus, the
optimal phenotype of the simulated genome is unable to surpass
the threshold as the estimation of the contribution of G × E to
the hybrid yield is difficult using a linear model. In contrast, the
genetic effects contributing to heterosis of the flowering time
and plant stature are mostly additive effects, as indicated by the
positions of the 98th and 95th percentiles of the predicted DTT
and PH among the 1404 F1 hybrids, respectively (Figure S10).

Concluding remarks
Modern breeding is characterized by the adoption of multidisci-
plinary science and technologies into breeding, including plant
biology and quantitative genetics, genome editing and synthetic
biology, bioinformatics and machine learning, as well as high-
throughput genotyping and phenotyping, which enable the rapid
development of genome-wide combinations of advantageous
alleles that express the desirable traits [57, 58]. Although the
virtually simulated genomes with optimal genotypes express-
ing optimal phenotypes may never be developed in reality, it
may accelerate maize breeding using the minimum numbers
of breeding materials and times of hybridization, to achieve
the maximum genetic gain with the fewest breeding cycles.
Furthermore, the DH technology has been available in 43 plant
species with mature production protocols so far, and it is widely
applied in major cereals like maize, rice and wheat in the seed
industry [59, 60]. Due to the greatly accelerated process of line
development, population of inbred or hybrid lines subjected
to selection has been much larger than previous years. With
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the advantages of GOVS illustrated in maize in this study, it
is foreseeable that GOVS has the potential to incorporate the
strategy of simulation of virtually optimized genome as part of
the DH breeding to accelerate genomically designed breeding in
other plant species.
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Key Points
• GOVS traces the inheritance of a genomic fragment

back to the parental lines used to produce DH lines,
and quantitatively assesses its genetic contribution to
F1 yield.

• GOVS determines the optimal genotype of each
genomic fragment positively contributing to F1 yield,
and the optimal genotype is subsequently selected to
assemble the virtual genome.

• GOVS assists in selection of superior lines based on
the number of fragments that a line contributes to the
virtually optimized genome, rather than basing it on
predicted phenotypes.

• GOVS plots the optimal route to pyramid the maxi-
mum advantageous alleles, since the GOVS-selected
lines contribute complementary sets of advantageous
alleles in known proportions to the optimal genome.

• GOVS accelerates the progress of genetic gain using
the fewest breeding materials and fewest events of
hybridization though genomically designed breeding.
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