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Exploiting crop germplasm with multi-omics data can greatly
enhance the power of gene discovery and interpret the genetic
relations of genes. Here, we present MODAS (Multi-Omics Data
Association Studies) software, freely available at https://modas-
bio.github.io/, to cope with high dimensional, noisy, and heteroge-
neous features typical of multi-omics data with advanced machine
learning and statistical methods. MODAS features four analytical
modules with extraordinary computing efficiency (Fig. S1 online).
It first performs dimensionality reduction (DR) on genotypic data
and generates a pseudo-genotype index file representing a
simplified atlas of whole-genome variation of a studied population.
The index file is then mainly used for an initial screening of
biologically-meaningful molecular traits (mTraits), such as mRNA
transcripts and metabolic compounds, showing significant associ-
ation with genomic variation. With the second module, MODAS
performs two steps of regional association (RA) analyses and one
DR to reduce redundancy across mTraits. During the third module,
MODAS performs expression GWAS (eGWAS) and metabolome
GWAS (mGWAS) using the mTraits identified above, followed by
visualization of GWAS signals and integration of annotation infor-
mation for the genes within the candidate interval in a web-based
user-friendly interface. In the fourth module, MODAS applies the
Mendelian randomization (MR) algorithm on the summarized RA
results to infer causal relations between transcription factors
(TFs) and target genes, gene expression or metabolic compounds
and phenotypic traits. The inferred relations then may facilitate
biologists in formulating a hypothesis for molecular validation.

Millions of single nucleotide polymorphisms (SNPs) are too
excessive to perform efficient association analysis with multi-
omics data. We therefore first applied MODAS to reduce the com-
plexity of the genotypic data and generate a simplified pseudo-
genotype index that nevertheless captures the genomic variation
across samples (Supplementary material online). MODAS first
scanned the genome in 1-Mbp sliding windows with a 0.5-Mbp
step and calculated Jaccard similarity coefficients [1] to measure
the genotypic similarity between all pairs of SNPs within the win-
dow. Determination of the proper sizes of sliding window and step
may be based on the distance of linkage disequilibrium (LD) decay
of the studied population analyzed by the PopLDdecay software
(Fig. S2, Supplementary materials online) [2]. It then applied the
clustering algorithm DBSCAN (density-based spatial clustering of
applications with noise) [3] to the resulting genotype similarity
matrix to generate genomic blocks with clustered SNPs. Finally,
principal component analysis (PCA) was performed on the geno-
types of clustered SNPs within each block and selected the first
principal component (PC1) for each block to represent the overall
genomic variation across the population (Supplementary materi-
als). As Fig. S3 (online) shows, PC1 contributions may explain
80% to 100% of the variances for the majority of the blocks. The
genome is then partitioned into tens of thousands of genomic
blocks used for the subsequent analysis, from which the pseudo-
genotype index file was derived for screening of mTraits in the sec-
ond module (Fig. 1a).

Multi-omics datasets are large, generally noisy, and possibly
highly redundant. Without appropriate data filtration, GWAS
results may include a high fraction of false-positive signals
(Fig. S4 online). MODAS performs two steps of RA analysis for ini-
tial screening of mTraits independently of either differential or cor-
relation analysis (Supplementary materials online). The first step
implements a mixed linear model (MLM) to identify mTraits signif-
icantly associated (P � 1 � 10�6) with the genomic blocks, with
consideration of the kinship matrix between samples [4]. In the
second step, all SNPs within a genomic block showing association
with a mTrait are extracted from the original genotype data and
used as input to rerun MLM to determine the exact boundaries
of the interval with significant association to that mTrait, followed
by summarizing candidate quantitative trait loci (QTLs) for the
subsequent analysis (Supplementary materials online).

MODAS adopts another DR step to remove data redundancy
embedded in mTraits (Supplementary materials online). Redun-
dancy is inherent not only to omics-type approaches but also to
the nature of biological pathways. For example, metabolic gene
clusters (MGCs) commonly exist in plant genomes, encoding
enzymes that catalyze enzymatic reactions in the same metabolic
pathway [5]. Thus, one genomic region might be identified repeat-
edly as associated with intermediate compounds and/or the final
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Fig. 1. Four major analytical modules of MODAS. (a) Module of dimensionality reduction. The pseudo-genotype index reflects the overall genotypic variation of an exemplary
region (Chr1: 142.0 to143.5 Mb). ‘‘M” and ‘‘m” represent the major and minor alleles of the 886 SNPs, respectively. (b) Module of regional association (RA) analysis. The
heatmap illustrates the 62 clusters of co-associated genes identified by RA analysis. (c) Module of expression GWAS (eGWAS) and metabolome GWAS (mGWAS). P1 gene is
located in the genomic region peaked at Chr1: s_48424403. ZmUGT1 gene is located at Chr6: 123,804,940 to 123,806,574, regulated by P1 in trans. (d) Module of Mendelian
randomization (MR). Causal relations between the P1 gene and 135 known metabolites were inferred. The y axis is �log10 (P), in which the P represents the statistical
significance of the MR effect estimated by v2 test. The red dashed lines represent the significance threshold (P = 1 � 10�5) for positive and negative MR effects. (e) MR-based
estimation of the contribution of flavonoid levels and P1 expression levels to the 15 agronomic traits of maize.
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product of the pathway. Additionally, if there is crosstalk between
different pathways, one metabolic product might be associated
with multiple genomic regions, together making mGWAS results
difficult to interpret. MODAS applied a PCA-based DR step to all
mTraits within each block separately, thus reducing the matrix of
compounds � samples to one dimension. The resulting PC1 values
are used for GWAS instead of the absolute mTrait values. We illus-
trate this functionality here with metabolome data. After RA anal-
ysis, six and eight metabolites showed significant associations with
two genomic blocks—blocks 40,619 and 58,979, respectively
(Fig. S5a online). The abundances of the compounds within each
block were highly correlated, suggesting that their respective
metabolism-related genes may lie in these blocks, most likely
encoding enzymes acting early in the biosynthetic pathway
(Fig. S5b online). We then applied a PCA-based DR step to all com-
pounds within each block separately, thus reducing the matrix of
compounds � samples to one dimension. Finally, we performed
GWAS with the two resulting PC1 values and identified two geno-
mic regions with a strong association with each PC1 value on chro-
mosomes 6 and 10 (Fig. S5c online), corresponding to blocks
40,619 and 58,979, respectively. The RA and DR steps above there-
fore identified a subset of metabolic compounds that can be subse-
quently submitted to any GWAS software to detect associated
regions harboring their metabolism-related genes and generate
Manhattan plots.

One genetic variant may not only influence the expression of
nearby genes in cis, but also that of distal genes in trans, and will
be reflected by co-association of such genes to the same polymor-
phic genomic region. As co-associated genes may be functionally
related, we adopted a clustering strategy to identify co-associated
genes from transcriptome data (Supplementary materials online).
After RA analysis, MODAS generated an association matrix of fil-
tered genes � peak SNPs, followed by calculating Jaccard similarity
coefficients between all possible gene pairs, and clustering genes
significantly associated with the same peak SNPs by DBSCAN
(Fig. 1b). We hypothesized that this approach would allow the dis-
covery of genes with correlated expression patterns resulting from
the same genomic variants acting both in cis and in trans, which
also forms the biological basis to infer the causal relationships
between genes, metabolites, and traits with the MR algorithm.

MR has been applied to infer causality among genetic variants,
risk factors, and common human disease based on GWAS summary
data [6–8]. Because metabolite contents reflect the expression of
genes in the relevant biosynthesis, MR may also be applicable for
inferring the causality between genes and metabolites and esti-
mating their contributions to traits. We explored this possibility
with regard to the well-studied flavonoid biosynthesis pathway
of maize. GWAS analysis of co-associated genes (eGWAS) and clus-
tered metabolites (mGWAS) identified the same genomic region on
the short arm of chromosome 1 (Fig. 1c, left two panels). The abun-
dance of apigenin, hesperetin, and quercetin, the products from the
flavonoid biosynthesis pathway [9], also showed an association
with this genomic region. Thus, we reasoned that genes involved
in flavonoid biosynthesis may reside in this region. Indeed, this
region contained the two previously reported Pericarp color1 (P1),
which encodes an R2R3-MYB domain TF) regulating pigmentation
of maize kernel [10]. Additional flavonoid biosynthetic genes
showed association with the same region, including FNS1 (Flavone
synthase1), A1 (Anthocyaninless1), C2 (Colorless2), PR1 (Purple aleu-
rone1), and UGT1 (UDP-glucosyl transferase1) [11], but they were
located on different chromosomes (Fig. 1c, right two panels). Thus,
flavonoid biosynthesis provides a typical example of cis-acting
variants affecting P1 expression and P1-regulated genes in trans.

The causal relations of co-mapped P1 and flavonoids may be
quantitatively inferred with the MRmethod (Supplementary mate-
rials online). Out of the 983 compounds profiled in maize kernels,
905
135 are known metabolites derived from 15 metabolic pathways.
We extracted an MR effect from our MR analysis representing
the statistical significance, and thus the degree of causality,
between each metabolite and the peak SNP (Chr1: s_48424403)
associated with P1 expression. Of the 135 metabolites, 27 passed
the threshold; of those, 23 were products from the flavonoid
biosynthetic pathway (Fig. 1d), in agreement with the reported
role of P1 [10].

We finally applied the MRmethod to estimate the contributions
of flavonoids and their biosynthetic genes to agronomic traits. We
first tested the causality of P1 and flavonoids: they exhibited pos-
itive causal effects on yield-related traits with very similar pat-
terns, such as kernel number per row (KNPR), cob weight, 100-
grain weight (100 GW), and ear length, with flavonoid levels and
P1 expression contributing significantly to KNPR and 100GW
(Fig. 1e). This implies that P1-regulated flavonoid biosynthesis
may be involved in grain yield, perhaps through effects on KNPR.

We identified two genomic regions on chromosomes 5 and 8
with MODAS (Fig. S6a online), which contain six pairs of TF and
autophagy genes (Table S1 online). These two regions fall into
two QTLs previously mapped by traditional linkage analysis, but
the causative genes remain uncharacterized due to the long list
of candidate genes. From each region, we selected a pair of TF
and gene with MR effects >30.0 and P < 1� 10�7 to validate if inter-
actions occur between the TF and targets with yeast one-hybrid
(Y1H) assay (Supplementary materials, Table S2 online). The two
pairs of TF and target are Zm00001d018258 (ZmMYBR67, MYB-
related transcription factor 67) and Zm00001d018259 (ZmATG12,
Autophagy-related 12) in the QTL of qtl_ch5-217.5mb, and
Zm00001d012015 (ZmSBP18, SBP-transcription factor 18) and
Zm00001d011984 (ZmATG6b, Beclin-1-like protein) in the QTL of
qtl_ch8-166.2mb. The Y1H result showed that the two TFs
ZmMYBR67 and ZmSBP18 can directly bind to the promoter regions
of ZmATG12 and ZmATG6b, respectively, thus worthy of further
investigation (Fig. S6b online).

Previously published tools, such as Mergeomics, SMR, GSMR,
and CoMM, mostly infer genetic regulation based on GWAS sum-
mary data [12–15]. In contrast, MODAS covers the whole proce-
dure of analyzing population-scale multi-omics data, including
dimensionality-reduction on genotypic data, screening of biologi-
cally-meaningful mTraits through a two-step RA analysis, and
MR-based inference of causal relationship from summary data.
MODAS also includes a visualization module to browse Manhattan
plots and gene annotations of significantly associated regions iden-
tified by GWAS. After manual curation of identified regions, if nec-
essary, MODAS combines all Manhattan plots into a single one to
visually integrate GWAS signals. These analytical modules may
be designed as a streamlined pipeline in MODAS, featuring extraor-
dinary computing efficiency. To test the software performance, we
run the MODAS pipeline on an RNA-Seq dataset containing expres-
sion data of 16,000 genes profiled from 510 maize samples.
MODAS accomplished the six steps of analyses with only 5.7 h
on a desktop server (Table S3 online).

GWAS with common agronomic traits has reached a bottleneck,
due to innate limitations when dissecting complex, polygenic
traits. Multi-omics analysis of a core crop germplasm may greatly
enhance the resolution of gene mapping, and improve the chance
of identifying causative genes for experimental validation. MODAS
adopts novel strategies and algorithms to reduce data complexity
and vastly accelerate computing efficiency for multi-omics data
association analysis in maize. It also has the potential of extending
to other plant species with necessary changes on some of the key
software parameters based on the features of the genome and pop-
ulation of a studied plant. MODAS will expedite the discovery of
agronomically important genes from plant germplasm in the era
of omics.
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