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Genotype-to-phenotype (G2P) prediction has become a mainstream paradigm

to facilitate genomic selection (GS)-assisted breeding in the seed industry. Many

methods have been introduced for building GS models, but their prediction

precision may vary depending on species and specific traits. Therefore,

evaluation of multiple models and selection of the appropriate one is crucial to

effective GS analysis. Here, we present the G2P container developed for the

Singularity platform, which not only contains a library of 16 state-of-the-art GS

models and 13 evaluation metrics. G2P works as an integrative environment

offering comprehensive, unbiased evaluation analyses of the 16 GS models,

which may be run in parallel on high-performance computing clusters. Based

on the evaluation outcome, G2P performs auto-ensemble algorithms that not

only can automatically select the most precise models but also can integrate

prediction results from multiple models. This functionality should further

improve the precision of G2P prediction. Another noteworthy function is the

refinement design of the training set, in which G2P optimizes the training set

based on the genetic diversity analysis of a studied population. Although the

training samples in the optimized set are fewer than in the original set, the

prediction precision is almost equivalent to that obtained when using the whole

set. This functionality is quite useful in practice, as it reduces the cost of

phenotyping when constructing training population. The G2P container and

source codes are freely accessible at https://g2p-env.github.io/.

KEYWORDS

genomic selection, genotype-to-phenotype prediction, singularity container, crop
breeding, multi-model integration
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Introduction

Genomic selection (GS) is the process of genomically estimating

breeding values based on genotype-to-phenotype (G2P) prediction

and was originally utilized in animal breeding for estimating the

breeding values of untested individuals by analyzing the genotype of

a sample (Meuwissen et al., 2001). Recently, GS has been proposed

as a promising approach for crop breeding as the dramatic decrease

of genotyping expense (Jannink et al., 2010; Hickey et al., 2019). The

core idea of GS is to predict phenotypes from genotypes of breeding

individuals, allowing a breeder to select the best genetic material to

produce a desired phenotype. Therefore, GS as a revolutionary

method of precision breeding offers multiple advantages over

traditional breeding: it greatly shortens the breeding cycle; it

reduces the cost of phenotyping; and it allows more genetic gains

per unit time (Jannink et al., 2010; Hickey et al., 2019; Yan and

Wang, 2022a). Recently, successful applications of GS in crop

breeding have been reported in a variety of crops such as maize,

barley, wheat, rice, soybean and rapeseed (Zhao et al., 2012; Nielsen

et al., 2016; Belamkar et al., 2018; Kumar et al., 2019; Wang et al.,

2021; Hu et al., 2022).

Despite the great potential of GS-assisted breeding, its broad

application in crops has been impeded by the complex situation in

crop breeding. For instance, multiple statistical, Bayesian, and

machine learning (ML) algorithms have been developed to

construct GS models in crops, but prediction precisions may vary

when applying different models on different species and traits to

certain degrees (Heffner et al., 2011; Ornella et al., 2014; Yan et al.,

2021). This is because prediction accuracy is influenced by many

factors, including the size of training and testing samples, the

genetic structure of the breeding population, the density of

whole-genome marks, the heritability of target traits, and the

span of linkage disequilibrium (Wray et al., 2013). Therefore, to

ensure the effectiveness of GS prediction, it is crucial to select the

most appropriate GS model based on a comprehensive evaluation of

all the methods using optimized parameters from a model library.

Data as of 2021, many GS packages have been developed, such

as “rrBLUP” for ridge regression best linear unbiased predictor

model (RRBLUP), “BGLR” for various Bayesian models (e.g. Bayes

A, Bayes B, Bayes C and etc.), and “spls” for sparse partial least

squares regression model (SPLS), as well as many ML-based

methods (Endelman, 2011; Colombani et al., 2012; Blondel et al.,

2015; Yan et al., 2021). Although these packages and tools have been

used for GS breeding in plants, an integrated environment

containing the publically available GS tools may greatly ease the

process of users to conduct a sufficient comparative evaluation of

GS models (Xu et al., 2021). Additionally, most current tools do not

support streamlined pipelines of data preprocessing, model

selection and performance evaluation. Data preprocessing is a

tedious and complicated process, including data format

conversion, data quality control, as well as partition of training

and testing samples. Performance evaluation requires complicated

fine-tuning of model parameters and objective evaluation with an

array of different metrics, such as Pearson correlation coefficient (r),

Mean square error (MSE). Through these two critical steps, the best
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models with optimized parameters can then be selected to use for

GS-assisted breeding. Because many tools must be configured

differently to meet the requirement of specific computing

environments, comparative evaluation of different GS models is a

complicated process. The Singularity platform, developed as a

scientific container for cloud computing, can easily package up

tools and software to run in reproducible environments (Kurtzer

et al., 2017). Singularity has been utilized to set up cloud computing

environments for many bioinformatics tools and pipelines

(Iacoangeli et al., 2019; Garofoli et al., 2019; Youens-Clark et al.,

2019). Therefore, it provides a promising means to integrate a

library of GS models, tools and preconfigured pipelines for

streamlined GS analysis. With such an integrated environment,

users not only can easily install and run all kinds of GS models, but

also can perform streamlined GS analyses without needing

advanced programming skills.

In this study, we present the G2P container, developed based on

the Singularity platform to serve as a reproducible environment

allowing users to perform streamlined GS analysis, including data

preprocessing, model construction, and model evaluation. It also

allows automatic integration of prediction results to simplify the GS

analysis. The library contains up to 16 state-of-the-art GS models and

13 evaluationmetrics, which are integrated into a uniform framework

to flexibly and conveniently call GS models for comparative

evaluation. Moreover, the container-based characteristics of G2P

will greatly ease the way for a bioinformatics personnel or

population geneticist to perform GS analysis, especially for the

situation involving comparative evaluation of multiple GS methods.

G2P is not only available as a container, but also can be installed and

used as a regular R package. Here, we demonstrate the features and

utility of G2P through analysis of a large maize population (CUBIC)

comprising 1,404 genotyped inbred lines with three phenotypes (Liu

et al., 2020; Luo et al., 2020).
Methods

Overall structure of the G2P container

The G2P container has two main components. The first comprises

stand-alone software and dependent libraries, offering the environment

for running G2P (Figure 1A). The second component comprises the R

package of G2P, containing the main modules required for GS analysis

(Figure 1B). This consists of fourmain analytical modules that function

as a streamlined pipeline, for preprocessing of genotype and phenotype

data (Supplementary materials), evaluation of the 16 models in the

library, integration of prediction results from multiple models, and

refinement of training datasets.
Parallel evaluation of GS models

The G2P library currently contains 16 models that have been

previously used in plant breeding: 14 regression-based models and

two classification-based models (Table 1). Streamlined pipelines for
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running these models are integrated into the “G2P” module, which

is the core function of the G2P container. A user may specify the

models from the library, and the selected models can be

simultaneously constructed by sett ing the parameter

“modelMethods” of the “G2P” module. To evaluate the prediction

precision of the selected models, 13 evaluation metrics can be called

by the function of “G2PEvaluation” (Table 2). The 13 evaluation

metrics can be classified into two categories: there are five metrics

for correlation-based evaluation and eight metrics for threshold-

based evaluation. The first five metrics measure the global similarity

between predicted and observed phenotypic values with a variety of

algorithms to compute correlation, and the remaining eight assess

the model precision by examining the proportion of predicted top

samples among the actual top samples with user-specified top 10%,

15%, 20%, or 30% of expected phenotypic values (Li et al., 2023).

Comparative evaluation of multiple GS methods using a cross-

validation (CV) scheme can be executed by the module

“G2PcrossValidation,” and this may also facilitate the selection of

the optimal parameters to achieve the best model performance.

Because multiple GS models and numerous folds of CV are

simultaneously evaluated, “G2PCrossValidation” is also

empowered with parallel computation on high-performance

computing clusters to accelerate the computing efficiency. It is

also worth noting that both the “G2P” and “G2PCrossValidation”

modules allow users to construct more complex models by

including other information besides genotypes. After a

comprehensive evaluation of the GS models in the library of G2P,

the final result of the evaluated GS models is presented so that users

may select the most appropriate model or models for selecting

breeding materials.
Integration of multi-model
prediction results

Because no single model works best for all species and traits,

aggregating the results from multiple GS models will further

improve the precision of phenotype prediction. G2P offers two
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strategies, GSMerge and GSEnsemble, to integrate multi-model

results, using the functions “GSMerge” and “GSEnsemble,”

respectively. The development of the GSMerge algorithm adopted

the idea of maximal accuracy–maximal difference (MAMD) based

on the evaluation results of different models. First, after phenotype

prediction, a matrix of predicted phenotypes multiplying GSmodels

is constructed. Second, the models are ranked based on their overall

prediction precision evaluated by one metric (e.g., Pearson

correlation coefficient) to generate a ranking, r1, and the top

model is selected. Third, predicted phenotypic values of the top

model are extracted, and then the correlations of its values with the

values predicted by the other models are calculated. This generates a

new ranking, r2. Fourth, the difference between the rankings r1 and

r2 is calculated, and then a second model is selected that shows not

only the best prediction precision but also the maximal difference

from the top model. Finally, a new value is computed as the

integrated prediction results from averaging the predicted values

of the two selected models. In addition to this automatic integration

process, the “GSMerge” function can also execute self-defined

integration with provided weights from “GSEnsemble” described

below or own experience.

GSEnsemble adopts another strategy, which is to perform

multiple rounds of iteration and repetition to integrate multi-

model results. GSEnsemble takes the same matrix of prediction

results from multi-model analysis as the initial input, and then a list

of initial weights computed based on the evaluation of model

precision is automatically generated. Subsequently, the self-

defined GSMerge integration procedure is applied to the two

models that are to be integrated. The difference is that

GSEnsemble integrates results by considering the more possible

weights of the two models instead of simply averaging the results

from the two models. Then, after evaluation and selection, the new

result from the first two models is merged with the result from the

third model and the corresponding weights are recorded. These

integration steps are repeated until the results from all of the models

are applied to the iteration and a list of optimal weights is finally

generated. It is worth noting that, rather than using one weight

combination, GSEnsemble allows users to define the time of
BA

FIGURE 1

Overview of the G2P singularity container. (A) Systems environment setup of the G2P container. The upper semicircle contains several stand-alone
software programs (capital letters) for GS related analysis and offering a running environment for the G2P functions (italics) in the lower semicircle.
The operating system and computing environment for the G2P container are shown on the circle. (B) The four main functional modules of the G2P
package, with the main functions of each module highlighted in italics.
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repetitions (i.e. the order in which the various models are

integrated) to shuffle the input of the result matrix and obtain a

weight matrix. Therefore, every set of weight combinations can be

used to compute a grand phenotypic value using weighted

prediction results of all the GS models in the library. Simply

speaking, the fundamental difference between GSMerge and

GSEnsemble is that GSEnsemble first generates a list of the

optimal combinations of models and weights by a series of

iterations and then computes the grand value based on the

weighted results of all of the models. However, GSEnsemble

processing is slower than GSMerge processing for large

training populations.
Refinement design of training dataset

Compilation of an appropriate training set is extremely

important for model precision and robustness, as the training set
Frontiers in Plant Science 04
should offer sufficient genetic diversity and coverage in sample

prediction. Otherwise, it may cause problematic either underfitting

or overfitting issues. With the accumulation of more and more

samples that are both genotyped and phenotyped, the training

dataset will be refined by both selecting representative samples and

removing redundant samples. G2P offers the module “TSRefine” to

allow both reference-free and reference-guided algorithms to refine

the training dataset. The reference-free algorithm uses the concept

of the minimum moment aberration (MMA) algorithm to select a

subset of candidates with the maximum discrepancy of genotypes.

MMA measures the discrepancy between two individuals in their

marker genotypes by averaging all pairwise similarities (Jin et al.,

2004; Sen et al., 2007). In this manner, the refined training dataset

may present more representative genetic diversity than the original

training set. A reference-free algorithm is preferable when

genotypes are difficult to obtain. In contrast, the reference-guided

algorithm utilizes the testing dataset as a reference. Through the

construction of two matrices of genomic relationship, one within
TABLE 1 Characteristics of the 16 GS models integrated in G2P.

Model Feature Package Refs

GS models based on regression

Bayes A Scaled t-distribution for marker effects, inverse chi-square on marker
variance

BGLR (de los Campos and Pérez,
2015)

Bayes B Similar to Bayes A; utilizes both shrinkage and variable selection method

Bayes C Characterized by a Gaussian distribution

Bayesian LASSO (BL) Marker variances resulting in a double exponential (DE) distribution

Bayesian ridge regression (BRR) Induces homogeneous shrinkage of all marker effects towards zero; marker
effect yields a Gaussian distribution

Reproducing kernel Hilbert space
(RKHS)

Effective for detecting nonadditive gene effects

Ridge regression (RR) Normal distribution for marker effects and nonzero rrBLUP (Endelman, 2011)

Ridge regression best linear unbiased
prediction (RRBLUP)

Assumes all markers have equal variances with small and nonzero effect

big ridge regression (bigRR) An extension and optimization of ridge regression hglm (Rönnegård et al., 2010; Shen
et al., 2013)

Least absolute shrinkage and selection
operator (LASSO)

Combine both shrinkage and variable selection method glmnet (Friedman et al., 2010; Ogutu
et al., 2012)

Sparse partial least squares (SPLS) Combining variable selection and modeling in a one-step procedure spls (Chung et al., 2012;
Colombani et al., 2012)

Support vector regression (SVR) Finds an appropriate line (or hyperplane in higher dimensions) to fit the
data

e1071 (Cortes and Vapnik, 1995;
Meyer et al., 2014)

Random forest regression (RFR) Uses the regression model rooted in bootstrapping sample observations randomForest (Breiman, 2001; Liaw and
Wiener, 2002)

Bayesian regularization neural networks
(BRNN)

Connects two hidden layers of opposite directions to the same output brnn (Rodriguez and Flores-Mara,
2019)

GS models based on classification

Support vector classification (SVC) Finds an optimal boundary between the possible outputs e1071 (Cortes and Vapnik, 1995;
Meyer et al., 2014)

Random forest classification (RFC) Uses bagging and feature randomness, consisting of many decision trees randomForest (Breiman, 2001; Liaw and
Wiener, 2002)
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the training set and another between individuals in the testing set

with the training set. Also, three alternative criteria, “PEVmean,”

“CDmean,” and “Sim,” are used as measurable criteria to seek the

optimal solution until the iteration becomes stable (Akdemir

et al., 2015).
Results

Demo datasets for developing the
G2P container

To illustrate the utility and performance of the G2P container,

we used a previously published dataset of maize inbred lines, the

Complete-diallel plus unbalanced breeding-derived inter-cross

(CUBIC) population, for testing (Liu et al., 2020). The CUBIC

population contains 1,404 recombinant lines produced from 24 elite

inbred lines that have been widely used for maize breeding in China

(Liu et al., 2020; Luo et al., 2020). The raw genotypic data, in the

binary PLINK format, of the 1,404 lines contains 14 million single-

nucleotide polymorphisms (SNPs) called from the whole-genome

resequencing of the CUBIC population. The phenotypes used as the

target traits for GS prediction include days to tassel (DTT), plant

height (PH), and ear weight (EW), representing the three critical

developmental stages of maize development. We focused on EW

because it is an important trait for evaluating maize yield and one of

the most complex and difficult traits to predict due to its low

heritability. Members of the CUBIC population were planted in five

ecological regions to collect raw phenotypic data, which were
Frontiers in Plant Science 05
further analyzed by the best linear unbiased predictor (BLUP)

model to remove variation caused by environmental effects. The

original datasets and the details of genotype and phenotype

collection and processing can be found at the website http://

cubicmaize.hzau.edu.cn and in the original research articles (Liu

et al., 2020; Luo et al., 2020).
Parallel evaluation of the 16 GS models
using 13 evaluation metrics

Subsequently, the 1,000 training samples in the CV-dataset were

used for comparison with the 16 GS models in the library using the

13 evaluation metrics by 5-fold CVs with 50 replications

(Supplementary Table 1). As we expected, the 16 GS models

showed greatly varied prediction precisions for the three traits.

The RFR, Bayes B, and RRBLUP methods achieved the best

performance using the most evaluation metrics when predicting

EW, DTT, and PH phenotypes (Figure 2A). For both datasets, the

16 GS models yielded varying precision, with Pearson correlation

coefficient (r) values ranging from 0.323 to 0.443 when predicting

EW (Figures 2B, C). Among them, the RFR model ranked as the

best method, as it achieved the best performance using all five of the

correlation-based methods. Bayes B was the best choice if using

metrics to predict the top 30% of samples (Figure 2A). For the other

two traits, Bayes A and BL were the top two models for predicting

DTT, while Bayes A and Bayes B were the top two for predicting PH

(Supplementary Table 2). This result is consistent with the previous

reports that no single method is best for all species and traits, such
TABLE 2 Descriptions of the 13 evaluation metrics integrated in G2P.

Evaluation Metrics Description Range

(I) Correlation-based global metrics

Pearson correlation coefficient (PCC, r, R) Strength and direction of the linear relationship between Xa and Yb [-1, 1]

Kendall rank correlation coefficient (KCC, tau, t) Ordinal association between X and Y [-1, 1]

Spearman rank correlation coefficient (SCC, rho, r) Indicator of how well the relationship between X and Y can be described using a monotonic
function

[-1, 1]

Coefficient of determination, R squared (R2, r2) Evaluating the goodness of fit of X and Y of linear regression [-1, 1]

Mean squared error (MSE) Average squared difference between X and Y [0, +∞)

(II) Threshold-based metrics

Normalized discounted cumulative gain (NDCG) Evaluating the prediction ability for selecting individuals that have top-ranked phenotypic values [0, 1]

Mean normalized discounted cumulative gain (mean
NDCG)

Mean of NDCG scores from k = 1 to k = Kc [0, 1]

Relative efficiency (RE) Expected gains when top k individuals are selected [-1, 1]

Accuracy Proportion of correctly classified individuals among K, for evaluating classification performance [0, 1]

F-score Balance between precision and recall [0, 1]

Area under the receiver operating characteristic curve
(AUC)

Area under the receiver operating characteristic curve, for evaluating classification performance [0, 1]

Area under the precision-recall curve (AUCpr) Area under the precision-recall curve, for evaluating classification performance [0, 1]

Cohen’s kappa coefficient (Kappa) Evaluating the agreement between X and Y [-1, 1]
front
aObserved phenotype. bPredicted phenotype. cTotal number of predicted individuals.
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that careful model selection is critical for effective GS-assisted

breeding (Ornella et al., 2014; Yan et al., 2021; Robert et al.,

2022). It also highlights the need to integrate the results from

multiple evaluation metrics to achieve unbiased selection of the

optimal GS models for a specific target trait in a designated species.

Perhaps one of the most important factors affecting model

performance is the sample size of the training population (Wray

et al., 2013; Jiang et al., 2020). To address this, G2P offers an

optional function of inferring the optimal population size for model
Frontiers in Plant Science 06
training by using different gradients of the numbers of training

samples set by the users. In our demo analysis, we gradually

expanded the training set from 200 to 1,000 samples, and then

visualized the prediction precision of the 16 models in terms of the

Pearson correlation coefficient (r) of the three traits with boxplots

and line charts (Supplementary Figure 1). Overall, all three traits

showed a similar trend whereby the prediction precision of the 16

models gradually improved with the expansion of the training set—

for DTT, from 0.429 to 0.603; for PH, from 0.453 to 0.619; and for
B C

A

FIGURE 2

Parallel evaluation of the GS models. (A) The ranks of prediction precisions for days to tasseling (DTT), plant height (PH), and ear weight (EW) of
1,404 maize inbred lines on the CV-dataset and Test-dataset by the 16 GS models with 13 evaluation metrics. (B, C) Prediction precision for the EW
trait using the 16 GS models. DTT and PH were considered as fixed effects, and the 9,286 SNPs were considered as random effects, on the CV-
dataset and Test-dataset, respectively. The precision was evaluated based on the Pearson correlation coefficient (r).
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EW, from 0.280 to 0.478. Furthermore, because considering

additional fixed effects in a GS model may also improve

prediction precision (Sarinelli et al., 2019), G2P allows users to

add customized fixed effects to the GS model. In the demo analysis,

we utilized DTT and PH as fixed effects in addition to the 9,286

SNPs and then performed 5-fold CV with 50 replicates on both the

CV-dataset and Test-dataset to evaluate the models (Supplementary

Table 3). In comparison with the results generated from the model

only using SNPs as random effects, the prediction precisions of 14 of

the 16 models (the exceptions being RR and bigRR) were elevated.

Among them, SPLS and LASSO showed the greatest improvement,

increasing by 0.066 (r: 0.330 to 0.396) and 0.062 (r: 0.465 to 0.527)

accuracy, respectively (Figures 2B, C). It is also worth mentioning

that G2P allows batch submission of the 16 GS models and the 13

evaluation metrics for parallel evaluation if a cluster of high-

performance computers is available. This functionality offers the

greatest convenience to the users for comparative evaluation of GS

models to assist selection of the optimal GS models.
A benchmark test of analytical efficiency of
the 16 models

In addition to prediction precision, analytical efficiency is

another important factor to consider, especially when the sizes of

samples and features are large. G2P records the CPU run time and

memory usage when performing model evaluation. In this study, we

used the benchmark test to evaluate the analytical efficiency of the

16 GS models under the G2P Singularity environment on a

Windows desktop with a configuration of 4-core CPU i5 6600K

and 32 GB memory. The benchmark test was performed on the

Test-dataset containing the 1,000 samples to record CPU run time

and memory usage, and this process was repeated ten times to

calculate the average efficiency.

The averaged run times of the 16 models varied greatly

(Figure 3A). The top three methods were SPLS, RRBLUP and RR,

with run times of less than 3.5 seconds. BRR, Bayes A, B and C, and

BL needed less than 20 seconds, and the other 8 methods all took

more than 100 seconds. It is worth mentioning that, although RFR

achieved the best precision when predicting EW, it took the longest,

at 529.9 seconds. Memory usage was evaluated using a method

called multiple (×) of initial data memory usage, which was 50.54

Mb when the entire dataset was loaded into memory. If no fixed

effect was added, SPLS, RRBLUP, RFR, LASSO, and RFC showed

the lowest memory usage, below 10×, and the top four memory-

usage models were BRNN, RR, RFC and RFR, using 41.56×, 20.44×,

18.05×, and 18.70× memory, respectively (Figure 3B). When fixed

effects were added to the models, memory usage increased in all

cases, but to different degrees for most of the models. Finally, we

examined how the sample size and marker number influence CPU

run time and memory usage of the 16 GS models, finding that both

sample size and marker number were positively correlated with the

computing resource for most models (Figures 3C-F). Especially for

RFR and RRBLUP, CPU run time and memory usage of RFR were

both linearly influenced by marker number and RFR was linearly

influenced by sample size.
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Integration of multi-model
prediction results

Overall, the prediction precision varied from model to model,

but certain models may generate similar predicted results. This is

reflected in the pairwise correlations (ranging from 0.54 to 1.00)

computed between the predicted phenotypic values by any pair of

models. This indicates that complementary relationships may exist

between certain GS models, which we may take advantage of to

integrate multi-model prediction results. G2P offers two strategies

for integrating predicted results from top-precision models, the

GSMerge and GSEnsemble algorithms (Figure 4A). GSMerge

automatically selects two top models with relatively high

precision and considerable difference in output. It then directly

averages the two sets of prediction results to generate a single

integrated result. In contrast, GSEnsemble considers the results

from all available models, after a search of a set of optimal weights

by iteration and repetition, to generate a grand value by

summarizing weighted values of all the models (See Methods).

Within the CV-dataset, we tested the effectiveness of integration

of multi-model predictions by the two algorithms for each fold of

CV. As we anticipated, when considering fixed effects, both

GSMerge and GSEnsemble strategies improved the precision of

EW prediction compared to the single BRR model that was the best

predictor, increasing the r value from 0.464 to 0.493 and 0.502,

respectively (Figure 4B). Consistent results were also observed when

fixed effects were not considered. The precisions of GSMerge and

GSEnsemble also increased, from 0.443 (RFR model) to 0.445 and

0.465, respectively (Supplementary Figure 2A). Furthermore, the

frequency of models selected by GSMerge among the 50 times 5-

fold (a total of 250 repetitions) were summarized to help direct

model selection for integration of the prediction results for the Test-

dataset (Figure 4D). For GSEnsemble, the mean weights of all 250

repetitions were calculated to obtain a set of weights of the models

to further utilize GSEnsemble for integrating the results from the

Test-dataset (Figure 4E). The same test of GSEnsemble-based

integration was performed without fixed effects, and the outcome

was consistent with the outcome when considering fixed effects

(Supplementary Figure 2). Therefore, the summarized results not

only give the users a reference for integration of multi-model

prediction, but also assist users in understanding which model

contributes the most weight under results integration.

To verify the effectiveness of prediction result integration, we

used the two most commonly used models (RFR and BayesB) for

GSMerge on the CV-dataset to perform GSMerge on the Test-

dataset as well as mean weights list for GSEnsemble on the CV-

dataset to perform GSEnsemble on the Test-dataset. As we

anticipated, both the GSMerge and GSEnsemble algorithms

improved the prediction precision on the EW traits compared to

the single models RFR and RKHS with and without fixed effects

considered, respectively (Figure 4C; Supplementary Figure 2B). It’s

also worth of noting that improvement of prediction precision by

GSEnsemble was better than that for GSMerge, regardless of

whether fixed effects were considered. These results indicate that

multi-model integration is a practical, effective strategy to achieve

better prediction of desired phenotypes.
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Application of G2P container on real-world
breeding data

We applied the G2P container on two sets of real-world

breeding data provided by a collaborating seed company. The

first dataset (Dataset 1) contained 7, 046 F1 hybrids generated by

crossing 3, 523 inbred lines with 2 tester lines, which were planted

in the ecological zone of Northeast China in 2021 and 2022 to

collect phenotypes. The second dataset (Dataset 2) contained 6,777

F1 hybrids generated by crossing 2, 259 inbred lines with 3 tester
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lines, which were planted in Central China in 2021 and 2022 to

collect phenotypes. The total 5, 782 inbred lines and the 5 tester

lines were genotyped using the genotyping by targeted sequencing

(GBTS) platform containing 44, 229 SNPs. We first analyzed the

genotypic data of the 5, 787 samples, and simulated the

heterogzygous genotypes of the total 13, 841 F1 hybrids, utilizing

the preprocessing pipeline in the G2P container described in

Supplementary Materials. The entire streamlined procedure of

genotypic data analysis took about ten minutes on a desktop

server (Xeon-E5 with 4-core and 64 GB memory). The raw
B

C D

E F

A

FIGURE 3

Benchmark test of the analytical efficiency of the 16 GS models. (A, B) Comparison of results after running the 16 GS models for training and
prediction on the CV-dataset in terms of CPU run time (A) and memory usage (B). CPU run time is indicated in seconds (s) and memory usage in
multiple (×) of running memory over initial data memory. (C, D) Correlation of CPU run time with the number of training samples (C) and the
number of SNPs (D). (E, F) Correlation of memory usage in megabytes (MB) with the number of training samples (E) and the number of SNPs (F).
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B C

D E

A

FIGURE 4

Improvement of prediction precision for the EW (ear weight) trait through integration of multi-model results. (A) Schematic illustration of the algorithms
for the two result integration functions. GSMerge selects models according to the difference of two ranks (ranks of prediction precision and ranks of
correlation coefficients between top1 model and others). Integration results of GSMerge is the average of prediction results of two selected models. The
deeper the color, the higher the correlation. By generating a weight list and executing GSMerge, GSEnsemble selects models and gets weights of
models after multiple iterations and repetitions. Integration results of GSEnsemble is the weighted average of all models. (B) Prediction precisions by
GSMerge- and GSEnsemble-based integration are better than those for the single model, BRR, with fixed effects considered on the CV-dataset. The
prediction precision was evaluated based on the Pearson correlation coefficient (r). (C) After integrated combination and weights from the CV-dataset
are utilized on predicting Test-dataset, prediction precisions for GSMerge- and GSEnsemble-based integration are improved relative to those predicted
by the best single model, RKHS, with fixed effect considered. (D) The statistics for the frequency of models selected by the GSMerge strategy using 50
times 5-fold cross validation on the CV-dataset. (E) The statistics of the weights of the models used for GSEnsemble on the CV-dataset.
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phenotypic data of grain yield (GY) per unit collected in the two

years and six locations planted in each of the ecological zones were

processed by the BLUP algorithm.

After the genotypic and phenotypic data were processed, we

then performed the GS analysis module with the 16 GS models and

13 evaluation metrics. We randomly selected 2, 046 and 1, 777 F1

hyrbids from the Dataset 1 and 2 as external validation set,

respectively. Then, we utilized the 5, 000 samples in each of the

datasets to train and evaluate models, followed by predicting the GY

per unit of the samples in the two external validation set. At last, the

predicted GY phenotypes of the validating samples were generated

by the GSEnsemble and GSMerge algorithms to integrate multi-

model prediction results. The GS analysis procedure took about tree

minutes on the same server to generate the model evaluation result

(Supplementary Table 4). The evaluation results showed that

RRBLUP method exhibited relatively stable and precise prediction

results compared to other methods in the Dataset 1, while the RKHS

method outperformed other GS models. We then utilized the two

algorithms, namely GSMerge and GSEnsemble developed in G2P,

to integrate multi-model prediction results. For the Dataset 1, the

prediction precision were improved from 0.500 (RKHS model) to

0.519 (GSEnsemble) evaluated by Pearson correlation coefficient

(Supplementary Figure 3A). For the Dataset 2, the prediction

precision were improved from 0.503 (RRBLUP model) to 0.530

(GSEnsemble) evaluated by Pearson correlation (Supplementary

Figure 3B). This result indicates that integration of multi-model

prediction result may greatly improved prediction precision.
Refinement design of training dataset

In addition to sample size, selecting a representative set of training

samples while achieving the maximal coverage of genetic diversity in

predicting samples for which phenotypes are not measured is a critical

step in GS-assisted breeding. Three main advantages may benefit from

refinement design of the training dataset based on the genotypes of

samples: first, it can decrease the cost of phenotyping when a subset of

training samples is selected; second, it may avoid model overfitting if

the training samples do not properly encompass the genetic diversity of

predicting samples; third, training samples may continuously grow

during the actual breeding practice, and it becomes necessary to

continually reevaluate the genetic structure of newly phenotyped and

genotyped samples. To assist the refinement design of a training

dataset, G2P offers the TSRefine module, which facilitates selection

of a subset of samples from the total training set using reference-free

and reference-guided algorithms (See Methods). To test the

effectiveness of the TSRefine function, we compared the prediction

precisions using a variety of training set sizes by random selection (RD)

and TSRefine selection of 40 to 1,000 samples. The comparison showed

that the PEVmean and CDmean of RRBLUP have an overwhelming

advantage over those for random selection (Figure 5A). On average,

prediction precisions using the training set by TSRefine selection were

0.051 to 0.056 higher than those obtained using random selection

evaluated by the Pearson correlation coefficient (r). When TSRefine

selected 500 representative training samples using the reference-guided

model (PEVmean), the prediction precision on the Test-dataset
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dropped only 8.3%, from 0.494 to 0.453, compared to the precision

using the entire set of the 1,000 samples (Figure 5B). This indicates that

phenotyping cost may be reduced to half with only an 8.3% sacrifice

in precision.

Additionally, TSRefine can illustrate the distribution of the

original, predicting, and refined training sets using a scatter plot

generated by PCA. With this, users can better understand the

genetic relationship of the above three sets in the background of

the whole population structure (Figure 5C). If no genotypes of

predicting samples are available, an alternative is to utilize a

reference-free mode of refinement design of training dataset.

When 600 representative samples were selected to compile an

optimized training set, the prediction precision on the Test-

dataset dropped only 5.2%, from 0.494 to 0.468 (PEVmean;

Figure 5B). Notably, however, this strategy can be applied only

when the training and prediction samples are largely similar in

terms of genetic backgrounds. Otherwise, it may cause either model

overfitting or underfitting.
Discussion

GS has become a novel breeding strategy that is considered to be

an important driving force for the new era of crop breeding (Jiang

et al., 2020). Many statistical and informatics methods have been

utilized to develop GS models to facilitate prediction of phenotypes

from genotypes. The most popular methods include best linear

unbiased predictor (BLUP)-based, Bayesian-based and machine

learning-based methods. However, because of the sophisticated

genetic complexity of crop species, no single method will work best

for all species and traits. Model selection to determine the most

appropriate model based on the particular traits and species therefore

is a crucial step in GS. To solve this challenge, we utilize the

Singularity platform to develop the G2P container, which packages

up a library of 16 state-of-the-art GS models and 13 evaluation

metrics. The main function of G2P is to perform batch evaluation of

multiple GS models with uniformed analytical framework assisted by

parallel computing. This utility offers great convenience for users by

enabling them to perform comprehensive and unbiased model

evaluation without having programming experience.

Another important feature of G2P is its use of two strategies to

integrate multi-model prediction results in an automatic fashion.

Our analysis showed that result integration may effectively improve

prediction precision. G2P also offers the capability of conducting

refinement design of training datasets, allowing selection of a subset

of optimized training samples based on genetic diversity analysis of

training and predicting populations. This function is quite useful in

practice, as it can not only greatly reduce the cost of phenotyping

when constructing training population, but also help design a GS

project amid the continuous growth of breeding data with available

genotypes and phenotypes. In addition to its main function of GS

analysis, G2P also provides a series of bioinformatics tools for data

preprocessing including data filtration, file format conversion,

representative SNP selection, genotype and phenotype imputation,

and data quality control. These tools greatly simplify the operation

for users without much programming skill.
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Taking the advantages of Singularity platform, the G2P container

is flexible and easy to install and to upgrade, but limitations still have

to be noticed. First of all, the purpose of developing G2P container is

provide a convinent environment which may simplify the procedure

of installing GS tools and performing GS analysis, so that starter users

without sufficient experinces in GS analysis and programming skills

may use it. Thus, only a limited number of GS tools are packaged with

the Singularity platform, which are easy to be developed as standard,

automated pipeline. Many of machine learning or deep learning

(DL)-based GS tools were not integrated into G2P container, as these

methods requires sophisticated parameter tuning or GPU computing.

If an experienced user wants to performML or DL-based GS analysis,

standlone tools are highly recommended. Secondly, because one of

the novel features of G2P container is to integrate prediction results

from the 16 GS models, computing efficiency is also an important

factor that have to be considered. Thus, preprocessing of training

dataset is highly recommended to compile a marker panel better

within 10K SNPs, and the training population better contains less
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than 10K samples. If a user wants to perform GS analysis on much

larger sample set with a marker panel containing over tens of

thousands of SNPs, it’s better to use standalone version of GS tools.

Morever, the current analytical pipelines in G2P only consider

additive effects when training a BLUP-based GS model and

epistatic interactions between SNPs were not considered, as

modulating of epistatsis may expotentially increase computational

complexity causing unexpected error during model training. At last,

the current version of G2P container only integrate regression-based

methods that are mostly used for predicting quantatitve traits of

common crop species, without considering special scenarios or traits

subjected to GS analysis. To cope with the above-mentioned

limitations, we plan to continuously upgrade the G2P container in

the near future, with more GS algorithms, more analytical functions,

and more user-friendly data input such as relationship matrix or

kinship matrix. In the future, G2P will be developed as a workshop

for crop breeders who wish to conduct cloud-based precision-

designed breeding.
B C

A

FIGURE 5

Comparison of different methods for refinement design of the training dataset. (A) Comparison of prediction precisions of the Test-dataset on EW
(ear weight) between the training sets compiled by TSRefine selection (Ref-free for reference-free method, CDmean, PEVmean and Sim for
reference-guided method) and random selection (RD) from the CV-dataset. RRBLUP was the GS model used to perform prediction from refined
training set to Test-dataset and prediction precision evaluated based on the Pearson correlation coefficient (r). (B) Percentage decrease in prediction
precision over the highest precision using different numbers of samples compiled by CDmean and PEVmean. Phenotyping cost represents the
percentage of TSRefine selection in the entire CV-dataset (n = 1,000, where n is the number of selected samples). (C) Comparison of the genetic
distributions of the original, prediction, and refined training samples by PCA.
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SUPPLEMENTARY FIGURE 1

Comparison of the prediction precision on the Test-dataset for DTT (days to

tasseling), PH (plant height), and EW (ear weight) got the 16 GS models overall
(A) and separately (B) using different numbers of training samples.

SUPPLEMENTARY FIGURE 2

(A) Prediction precisions by GSMerge- and GSEnsemble-based integration

are better than those by the single model RFR without fixed effects
considered on the CV-dataset. The prediction precision was evaluated

based on the Pearson correlation coefficient (r). (B) By applying integrated
combination and weights from the CV-dataset to prediction of the Test-

dataset, prediction precisions with GSMerge- and GSEnsemble-based

integration are more improved than those with the best single model, RFR,
without fixed effects considered. (C) The statistics of model selection

frequency by the GSMerge strategy through 50 times 5-fold cross
validation on the CV-dataset. (D) The statistics of the weights of the 14

models used for GSEnsemble strategy on the CV-dataset.

SUPPLEMENTARY FIGURE 3

The prediction precision was evaluated by Pearson correlation coefficient of
two results integrationmethods on real-world breeding data. (A) The ecological
zone of Northeast China and (B) The ecological zone of Central China
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