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Abstract The information commons for rice (IC4R) database is a collection of 18 million single

nucleotide polymorphisms (SNPs) identified by resequencing of 5152 rice accessions. Although

IC4R offers ultra-high density rice variation map, these raw SNPs are not readily usable for the

public. To satisfy different research utilizations of SNPs for population genetics, evolutionary anal-

ysis, association studies, and genomic breeding in rice, raw genotypic data of these 18 million SNPs

were processed by unified bioinformatics pipelines. The outcomes were used to develop a daughter

database of IC4R – SnpReady for Rice (SR4R). SR4R presents four reference SNP panels, includ-

ing 2,097,405 hapmapSNPs after data filtration and genotype imputation, 156,502 tagSNPs selected

from linkage disequilibrium-based redundancy removal, 1180 fixedSNPs selected from genes

exhibiting selective sweep signatures, and 38 barcodeSNPs selected from DNA fingerprinting sim-

ulation. SR4R thus offers a highly efficient rice variation map that combines reduced SNP redun-

dancy with extensive data describing the genetic diversity of rice populations. In addition, SR4R

provides rice researchers with a web interface that enables them to browse all four SNP panels,

use online toolkits, as well as retrieve the original data and scripts for a variety of population genet-

ics analyses on local computers. SR4R is freely available to academic users at http://sr4r.ic4r.org/.
nces and
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Introduction

Rice (Oryza sativa) is the first crop with genome sequenced. In
the past decade, thousands of rice accessions in the germplasm

banks worldwide have been genotyped [1] and numerous rice
variation databases have been constructed. One of these data-
bases is the rice variation database (RVD; http://variation.ic4r.

org/), a daughter database of the Information Commons for
Rice consortium (IC4R) [2]. RVD is a collection of 18 million
single nucleotide polymorphisms (SNPs) identified from 5152
rice accessions based on whole-genome resequencing data,

and offers an ultra-high-density rice variation map, with about
one SNP per 20 bases on average. The information contained
in this high volume of raw SNPs is not ready for use until it has

been processed to remove low-quality SNPs, such as those with
missing/low-frequency genotypes, or redundant SNPs identi-
fied due to linkage disequilibrium (LD). In addition, different

types of research activities require different magnitudes of
SNPs to ensure efficient computation and accurate results.
For example, requirements are different for evolutionary stud-

ies using comparative genomics and pan-genome analysis, gene
mapping by quantitative trait loci (QTL), genome-wide associ-
ation study (GWAS) analysis, molecular breeding by marker-
assisted selection (MAS) and genomic selection (GS), as well as

variety protection by DNA fingerprint barcoding.
Construction of a reference haplotype map (HapMap) to

represent the maximal population diversity for a species is

the first step. The 18 million raw SNPs in RVD provide an ini-
tial variation data set to generate a reference HapMap for rice.
According to the human HapMap from The International

Genome Sample Resource (https://www.internationalgenome.
org/), which contains over 3.1 million high-quality SNPs, a
density of one SNP per 100 bases is sufficient for performing
genotype imputation, GWAS analysis, and mapping of causal

variations [3]. Because the genome size of rice is ~400 Mb,
about two million high-quality SNPs may offer an ideal den-
sity of one SNP per 200 bases. Such density of a reference rice

HapMap is especially useful for molecular breeders to perform
genotype imputation to infer missing genotypes or increase
SNP density, as low-density genotyping platforms are mostly

used in rice to lower genotyping expense.
For population genetics studies in which thousands of indi-

vidual samples are assessed, millions of SNPs in an entire Hap-

Map are excessive. The redundant SNPs in a HapMap
extensively increase computing costs, and may also reduce
the accuracy of results. To circumvent these challenges, a sub-
group of SNPs whose genotypes are significantly correlated

with other SNPs in the same LD region is selected; these are
known as tagging SNPs. The number of tagging SNPs may
vary between species and populations, depending on the

lengths of LD regions in each group [4]. Based on the data
in RVD, LD length in rice ranges 100–500 kb; thus 100,000
SNPs, which yields a density of one tagging SNP per 3–5 kb,

is sufficient for various genetic diversity analysis.
The expense of genotyping is an important factor to con-

sider in crop molecular breeding, as molecular breeding typi-
cally requires the rapid genotyping of thousands of samples,

often within days or even hours. Therefore, low SNP density
genotyping technologies, such as SNP chip or Kompetitive
Allele Specific PCR (KASP)-based platforms, are usually pre-

ferred by industrial seed companies. These methods offer great
flexibility by combining the rapid identification of low num-
bers of SNPs (several to a few dozen) with the ability to mul-
tiplex hundreds to thousands of DNA samples. However, these

methods suffer from lack of precision.
Modern breeding methods demand the efficiency and sta-

bility of a highly concise marker panel containing around

1000 SNPs. SNPs used to select plants for breeding typically
occur in genes or genomic regions that are associated with
agronomic traits believed to be subjected to selective pressures

[5]. Genes with variations exhibiting selectively fixed signatures
can be identified based on the hp and Fst values computed by
selective sweep analysis [6]. This magnitude of SNPs is suitable
for synthesis on low-density SNP chips, which are then used

for conducting certain types of molecular analyses, such as
MAS, seed purity or heterozygosity testing, genetic component
analysis, and subpopulation classification. For intellectual pro-

tection of commercial rice varieties, DNA fingerprinting typi-
cally uses only 12–36 SNPs, to generate a combination of
barcodes with maximal resolution to distinguish commercial

varieties in the seed industry or germplasm accessions in Gen-
Bank. Simulation of all possible combinations of a set of can-
didate SNPs has to be tested in a large germplasm population

to ensure the maximal resolution with fewest markers, such as
the MinimalMarker algorithm [7].

To enhance the ability of researchers to effectively use the
RVD in IC4R, we developed SnpReady for Rice (SR4R), a

daughter database of IC4R. SR4R enables researcher to read-
ily retrieve SNPs that are relevant to their own research activ-
ities, thus saving time and computational resources. In SR4R,

the 18 million SNPs have been divided into four categories:
hapmapSNPs, tagSNPs, fixedSNPs, and barcodeSNPs (Fig-
ure 1). SR4R allows users to browse the information associ-

ated with each SNP panel, and also to download each set of
genotype files for local use. SR4R also offers 18 bioinformatics
tools and pipeline scripts, enabling users to run the tools

locally to perform genotype imputation, basic statistical anal-
ysis, genotype file format conversion, SNP filtration and
extraction, population structure analysis, genetic diversity
analysis, rice subpopulation classification, DNA fingerprinting

analysis, and other additional functions.

Database content and analytical modules

The hapmapSNP panel

RVD in IC4R is a collection of 18 million SNPs with related
annotation information, identified from previously published
whole-genome resequencing of 5152 rice accessions [2]. Such

a high-density rice variation map, which identifies one SNP
per 20 bases on average, offers the possibility to generate a
high-density HapMap for the rice research community. Gener-

ation of such a high-density HapMap was the first step to cre-
ate SR4R described in the current study.

To ensure the quality of HapMap, we performed an initial

filtration of samples and SNPs on the raw data set of 5152
accessions (Materials and methods). First, a total of 2556
accessions with genotype missing rate <20% were selected;
each selected accession has been documented with explicit sub-

population classification and origins (Table S1). Then, SNPs
with genotype missing rate �0.1 and minor allele frequency
(MAF) � 0.05 were removed. Genotype imputation on the

http://variation.ic4r.org/
http://variation.ic4r.org/
https://www.internationalgenome.org/
https://www.internationalgenome.org/
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Figure 1 An overview of the four SNP panels of the SR4R database

The flow chart describes procedures on how the four SNP panels were generated.
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resulting 2,883,623 SNPs in the selected 2556 accessions
yielded a high-quality HapMap containing 2,097,405 SNPs,
without any missing genotypes using the software Beagle (ver-

sion 3.3.2) [8]. These 2,097,405 SNPs were regarded as the hap-
mapSNP panel and were used as the initial data set for
generating the other three SNP panels (Figure 2A–D).

The generated reference HapMap of rice has an average
density of one SNP per 200 bp with a heterozygosity rate of
1.75% (Figure 2E). Genome-wide distribution statistics
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territory, respectively (Figure 2F). The 2,097,405 hapmapSNPs
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type data to increase the density of SNPs generated from low-
density genotyping platform.

The tagSNP panel

High SNP density is beneficial to precise mapping of trait-
related genes with GWAS analysis, but is not suitable for pop-

ulation genetic analysis, because SNP redundancy may add
unnecessary computational costs and introduce bias to the
results [9]. Since SNPs within the same LD region possess cor-

related genotypes forming one haplotype block, a representa-
tive SNP is usually selected as a tag to solve the redundancy
issue. We adopted an LD-based SNP pruning procedure to

infer haplotype tagging SNPs (tagSNPs) from the hap-
mapSNPs (Materials and methods). As a result, 156,502
tagSNPs were identified. To verify whether the tagSNP panel
properly represents the genetic diversity of the population,

phylogenetic analysis using the 156,502 tagSNPs was
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To test whether the 156,502 tagSNPs can generate the population s

structure analyses were performed to generate the phylogenetic tree (A)

(C), and the phylogenetic tree of the six subgroups of Ind rice (D). In

temperate japonica rice; Oru, O. rufipogon.
performed on the 2556 rice accessions, which were explicitly
documented with subpopulation classification and origins.
As shown in Figure 3A, the resulting phylogenetic tree clearly

exhibited six major clades, representing the five cultivated rice
subpopulations and one wild rice subpopulation. The five cul-
tivated rice subpopulations include indica rice (Ind for short)

containing 1655 accessions, Aus rice (Aus) containing 182
accessions, Aromatic (Aro) rice containing 56 accessions, trop-
ical japonica rice (TrJ) containing 318 accessions, and temper-

ate japonica rice (TeJ) containing 327 accessions, whilst the
wild rice subpopulation contains 18O. rufipogon (Oru) acces-
sions. In addition, principal component analysis (PCA)-
based (Figure 3B) and admixture-based analysis (Figure 3C)

showed the same pattern, with the subpopulation classification
as the phylogenetic tree indicated. For population admixture
structure analysis, a predefined parameter of ‘‘K value” was

used to mandatorily estimate the number of subpopulations
and for each K value, in which each subpopulation was repre-
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sented by a unique color to visualize the genetic composition.
Because the optimal number of subpopulation is usually
unknown, a common way is to use a series of K value to esti-

mate the optimal K parameter. It is worth noting that the
japonica, Ind, and Aus subpopulations were explicitly sepa-
rated with K = 3, while the six subpopulations were clearly

separated with K = 8. In addition, with K = 4–7, the Ind sub-
population showed clear structure divided into six subgroups,
denoted as S1 to S6, as indicated by both PCA and admixture

analysis (Figure 3D, S1A and B). The genetic structures of the
six rice subpopulations and the six Ind subgroups are consis-
tent with previous reports [10].

Genetic diversity analysis with the tagSNP panel

The tagSNP panel represents a subset of the hapmapSNPs
after approximately 92.5% of the genetic redundancy was

removed. To test the effectiveness of the 156,502 tagSNPs,
we performed another series of standard genetic diversity anal-
yses and examined whether the results agreed with previous

reports. First, we found that the count of homozygous SNPs
and the heterozygosity rate of the accessions in the six subpop-
ulations showed opposite trends: while the accessions in the

TeJ subpopulation had the highest count of homozygous
SNPs and lowest heterozygous rate, the accessions in the Ind
subpopulation had the lowest count of homozygosity SNPs
and highest homozygosity rate (Figure 4A and B). The identity

by state (IBS) analysis is a commonly used method to measure
the similarity of alleles in a designated population, which may
reflect the genetic diversity of the whole population and sub-

populations. Comparison of the IBS values among different
subpopulations may help understand the degree of genetic dif-
ferentiation in different subpopulations. In order to validate

whether the IBS results generated from the tagSNPs are con-
sistent with previous reports regarding the genetic diversity
in different subpopulations, pairwise computation of the IBS

values between each pair of accessions within the same sub-
population was performed, and the results showed that TeJ
rice has the highest IBS values, while the Ind rice has the lowest
ones (Figure 4C). In addition, runs of homozygosity (ROH)

analysis indicated that the TeJ rice has the highest number
of and longest ROH regions, while the Ind rice has the fewest
and shortest ROH regions (Figure 4D). This pattern agreed

with the result from LD decay analysis showing that TeJ rice
has the slowest LD decay rate while the Ind rice has fastest
decay rate (Figure 4E). Computations of hp and Fst are com-

monly used methods to measure genetic diversity within pop-
ulation and between population, respectively (Materials and
methods). The within-subpopulation diversities of the six rice
subpopulations are Oru (hp = 0.218), Ind (hp = 0.216), Aus

(hp = 0.182), Aro (hp = 0.145), TrJ (hp = 0.116), and TeJ
(hp = 0.068) (Figure 4F). Using the wild rice subpopulation
as reference, the genetic distances of the five types of cultivated

rice subpopulations to wild rice are TeJ (Fst = 0.476), TrJ
(Fst = 0.419), Aus (Fst = 0.299), Ind (Fst = 0.266), and
Aro (Fst = 0.241), suggesting the highest domestication level

of japonica rice compared to other rice (Figure 4F and G).
The collective results from multiple angles of standard genetic
diversity analyses were consistent with previous reports that

Ind rice has a more complicated genetic composition and ori-
gin compared to the other five subpopulations [11].
GS analysis with the tagSNP panel

GS has been widely used in industrial animal and crop breed-
ing programs [12], which usually employs a best linear unbi-
ased prediction (BLUP) model. The BLUP model is first

trained with known genotypes and phenotypes of reference
population samples, usually accounting for 20%–50% of a
breeding population, and then used to predict the unknown
phenotypes of the remaining genotyped samples (the candidate

population). The predicted phenotypes, known as the genomic
estimated breeding values (GEBV), are ranked from high to
low, and can be used to assist in deciding upon a hybridization

plan. Although GS may significantly shorten the breeding
cycle, the cost for genotyping has been a vital factor because
the GS model has to take genome-wide SNP markers as input,

especially from crop breeding in which thousands to hundreds
of thousands of individuals need to be genotyped. In order to
lower genotyping cost, compilation of a set of thousands of

SNPs that may best represent the overall genetic backgrounds
of a breeding population is of great importance.

Because the 156,502 tagSNP category is a high-quality mar-
ker set after removing redundancy at most while preserving

maximal genetic diversity, it may be considered as a marker
pool for selecting high-efficiency SNPs for genomic selection.
To test the effectiveness, we analyzed a previously published

data set containing 414 rice parental lines with non-missing
genotypes of 29,434 SNPs profiled by the Illumina rice 44 K
SNP chip, and nine phenotype traits (flowering time, panicle

fertility, seed width, seed volume, seed surface area, plant
height, flag leaf length, flag leaf width, and florets per panicle).
To perform GS, we built a model using the ridge regression
BLUP (rrBLUP) algorithm [13], and prediction accuracy was

evaluated with Pearson correlation between observed and pre-
dicted traits by five-fold cross validation. The evaluation was
performed using five different SNP combinations: Set-1, orig-

inal 29,434 SNPs on the 44 K chip; Set-2, 1090 SNPs overlap-
ping between the 156,502 tagSNPs and the aforementioned
29,434 SNPs in Set-1; Set-3, 1090 SNPs randomly selected

from the aforementioned 29,434 SNPs; Set-4, 1090 SNPs
evenly distributed in the genome (one SNP per 350 kb) selected
from the aforementioned 29,434 SNPs; and Set-5, 1090 consec-

utive SNPs localized within a randomly selected genomic
region from the aforementioned 29,434 SNPs. Then the
rrBLUP prediction was performed on the nine phenotype
traits using the five sets of SNPs to compare prediction accura-

cies (Figure 5). Although prediction accuracies varied greatly,
ranging 0.23–0.90 among the nine traits due to different heri-
tability of each trait, the trend of the five SNP sets for the same

trait was generally consistent. Except for the trait of panicle
fertility in which Set-2 (1090 tagSNPs) exhibited the highest
prediction accuracy, Set-1 (full 29,434 SNPs) showed the high-

est prediction accuracy for the other eight traits followed by
Set-2 in the second position. We further performed pairwise
student’s t-test for Pearson correlations of Set-2 and the other
four sets, we found that Set-2 significantly (P � 0.05) outper-

forms other randomly selected SNPs in Set-3 to Set-5 for some
traits (Figure S2). These results indicate that selection of about
1000 tagSNPs from the tagSNP pool might be a feasible option

to lower genotyping budget; for example, these SNPs could
inform the synthesis of a new low-density SNP chip rather
than using high-density SNP chip.
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The fixedSNP panel

In the crop breeding industry, genotyping cost per sample is a

top-priority factor, since hundreds to thousands of samples are
often genotyped in a single day. The data then assists a variety
of molecular breeding practices, including GS-assisted pheno-
type prediction, marker-assisted backcrossing, seed purity or

genotype heterozygosity analysis, and subpopulation identifi-
cation. Cost reduction is usually fulfilled by compiling a highly
effective marker panel containing only dozens to hundreds of
SNPs that are available for high-throughput genotyping plat-

forms, such as Douglas ArrayTape and LGC Omega-F equip-
ment, using the KASP genotyping assay. These systems allow
users to flexibly combine different numbers of SNPs and DNA

samples using multiple plates with 96 or 384 wells per run. To
meet the industrial demand, further compression of the
tagSNP panel must consider not only the genetic relationship

between subpopulations and accessions, but also the evolu-
tionary and/or functional significance of SNPs with high diag-
nostic effectiveness and stability.
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The Fst and hp values are commonly used indicators of
genomic regions demonstrating signatures of selective sweeps,
caused by domestications, artificial selections, or environmen-

tal adaption. SNPs in selective sweep regions are usually evo-
lutionarily fixed with strong positive selection signals. To
generate the fixedSNP panel, we first identified the selective

sweep regions that are specific to each subpopulation or com-
mon to the six subpopulations by ranking within the top 5% of
both Fst and hp ratios based on the comparison of the culti-
vated subpopulations against the wild rice population (Materi-

als and methods) (Figure 6A). Using 100-kb and 10-kb
windows, large and small genomic regions showing selective
sweep signals were identified, respectively. In total, 227 (culti-

vated vs. wild subpopulations), 381 (Ind vs. wild), 333 (Aus vs.
wild), 296 (Aro vs. wild), 256 (TrJ vs. wild) and 269 (TeJ vs.
wild) identified regions showed significantly (t-test; P � 0.05)

smaller Tajima’ D values compared to other genomic regions
(Figure 6B). Subsequently, genes located in the selective sweep
regions and their corresponding gene set enrichment analysis

(GSEA) terms were further identified for each subpopulation.
We found that ~50% of GSEA terms are specific to each sub-
population, whilst only 27 GSEA terms co-exist in the five cul-
tivated rice subpopulations (Figure 6C). Finally, a total of

1180 SNPs occurring within the genes in the selective sweep
regions were selected to generate the fixedSNP panel.

Subpopulation classification analysis with the fixedSNP panel

To evaluate the fixedSNP panel, subpopulation classification
with phylogenetic tree analysis was performed using the 1180

fixedSNPs, and the results were compared with the results
obtained using the 156,502 tagSNPs on the same population
of 2556 accessions. All of the accessions were assigned to the
correct subpopulations with tagSNPs and the phylogenetic tree
showed consistent structure with the tree constructed using fix-
edSNPs (Figure 6D). To further evaluate the universality of

the fixedSNP panel, we performed subpopulation classification
on two external populations genotyped by SNP chips [11,14].
One chip data set contained 880 cultivated rice accessions

genotyped by the Affymetrix 700 K SNP chip, while the other
contained 351 cultivated accessions genotyped by the Illumina
44 K SNP chip. Both external chip data sets have been docu-
mented with clear subpopulation classifications and origins,

and possess relatively high genetic diversity. Only 314 and 63
SNPs from the 700 K and 44 K chips, respectively, were found
in the 1180 fixedSNP panel. For the chip data set containing

880 accessions, 877 accessions were correctly assigned to their
documented subpopulations; three TeJ accessions
(IRGC121549, IRGC121520, and IRGC121535) were incor-

rectly assigned to the TrJ subpopulation (Figure 6E). As for
chip data set containing 351 accessions, 348 were assigned to
the correct subpopulation; three TeJ accessions (NSFTV134,

NSFTV204, and NSFTV283) were mistakenly assigned to
TrJ rice (Figure 6F). Overall, 99.8% of the rice accessions
examined were assigned to previously documented subpopula-
tion records using markers extracted from the fixedSNP panel,

indicating that the fixedSNP panel is an efficient, accurate new
tool for subpopulation classification.

The barcodeSNP panel

DNA fingerprinting technology using a small set of SNPs to
generate a series of genotype combinations, referred to as bar-

codes, has become an economical means to protect commer-
cialized varieties. Thus, the barcodeSNP panel must be able
to uniquely identify these barcodes to distinguish each of the
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A. Distribution of hp ratios (wild vs. cultivar) and corresponding Fst values, which are calculated in 100-kb windows. Data points located
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data set. E. Phylogenetic tree of 880 rice cultivars in the Affymetrix 700 K chip data set. F. Phylogenetic tree of 351 rice cultivars in the

Illumina 44 K chip data set.
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rice varieties on the market. To ensure highest uniqueness
using lowest count of barcodeSNPs, we applied the Mini-
malMarker algorithm on the fixedSNP panel to exhaustively

traverse all possible genotype combinations that would distin-
guish the 2556 accessions (Materials and methods). The Min-
imalMarker algorithm generates three sets of minimum
marker combinations, in which each set contains 28 SNPs.

After merging the three sets, 38 barcodeSNPs were finally
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selected to generate the panel (Figure S3A). In addition,
upstream and downstream flanking sequences were also pro-
vided for users to design primers for KASP genotyping assays.

SR4R also offers a web interface that allows users to iden-
tify corresponding accessions or varieties when rice varieties
are submitted for genotyping with any number of bar-

codeSNPs ranging 8–38. The SR4R returns a list of the top
10 best-matched accessions/varieties in the database, and dis-
plays associated information including the accession/variety

IDs, number of mismatched bases, genomic position of the
barcode, genotype heterozygosity, as well as documented
subpopulation and origin. Among the top 10 hits, if multiple
best-matched varieties with 100% identity are returned using

a certain number of barcodes, the users may genotype addi-
tional barcodeSNPs until a unique best matched variety is
identified. It is worth noting that because the SR4R does not

have a complete list of the barcodes for all commercial rice
varieties in the database, the aforementioned 38 barcodeSNPs
is considered as an initial panel for users to test the best

combinations with the optimal sensitivity and specificity using
flexible numbers of markers.

Machine learning analysis with the barcodeSNP panel

If a new variety genotyped with barcodeSNPs is not found in
the database, SR4R will perform subpopulation classification.
The traditional method of subpopulation classification first

integrates the genotype of the submitted variety with the geno-
types of all the varieties in the database, then performs phylo-
genetic analysis to determine the best assigned subpopulation.

This procedure is tedious and computationally inefficient since
the database contains hundreds of thousands of accessions. To
simplify the procedure for implementation through a web

interface, we adopted an alternative method that utilizes
machine learning-based subpopulation classification models,
using the 38 barcodeSNPs as features. We employed all of

the 2556 rice accessions to evaluate seven commonly used
machine learning algorithms for performing subpopulation
classification, followed by ten-fold cross validation assessment
(Materials and methods). The seven machine learning algo-

rithms include decision tree (DT), k-nearest neighbors
(KNN), naı̈ve Bayesian (NB), artificial neural network
(ANN), random forest (RF), one-vs-rest logistic regression

(LR-O), and multivariate logistic regression (LR-M). A series
of assessments of the classification precision in the five culti-
vated rice subpopulations indicated that, out of the seven

methods tested, the best one is the LR-M model, whose area
under the curve (AUC) values were �0.99 for all subpopula-
tions (Figure S3B–H). Additional methods are one-vs-rest
logistic regression and the random forest model; where results

from each yielded similar classification precision to the LR-M
model. Then, we used an independent data set containing 880
rice accessions profiled by the Affymetrix 700 K rice SNP chip

for validation. The LR-M model was trained by the 2556 rice
accessions, and then predicted the subpopulation classifica-
tions on the 880 samples. The AUC values were all �0.99

for all subpopulations in this independent data set, indicating
robustness of the model (Figure S4A). Moreover, comparison
of the original label and the predicted label with the maximal

probability for each sample showed that the true positive rate
(TPR) and false positive rate (FPR) are also reasonable
(Figure S4B). The pre-trained classification models with the
seven machine learning algorithms have been implemented
on the SR4R server as a web tool, users can perform subpop-

ulation classification when the genotype information of the 38
barcodeSNPs is submitted.

The barcodeIndel panel

Indels are another form of genomic variations (usually <50 bp
in length) that can be used as molecular markers for a variety

of population analysis. From the 5152 rice accessions, a total
of 4,217,174 raw Indels variations were identified using the
IC4R variation calling pipeline [2]. After filtering low-quality

Indels, 109,898 high-confidence Indels were retained with miss-
ing rate <0.01 and MAF �0.05 within the 2556 rice acces-
sions. Among the 109,898 high-confidence Indels, we further
identified 62 subpopulation-specific Indels, which can be used

as barcodeIndels to differentiate the six rice subpopulations
TeJ, TrJ, Aro, Aus, Ind, and Oru, and the six subgroups of
Ind rice S1–S6 (Table S2). The 109,898 high-confidence Indels

can be download from SR4R for users’ customized analysis.

Web interface of SR4R database

Using unified bioinformatics pipelines, the genotype data of 18
million raw SNPs identified from 5152 rice accessions were
processed to construct four reference panels of SNPs for differ-
ent utilizations. Because genotype data processing is a compli-

cated and computationally intensive procedure, the four SNP
panels are readily usable for a variety of analyses, which would
simplify task for rice researchers. For better sharing of SNPs

and improvement of the rice variation map utility, we devel-
oped the SR4R database. Through the SR4R web interface,
users may directly browse the four panels and retrieve detailed

information related to the 2,097,405 hapmapSNPs, 156,502
tagSNPs, 1180 fixedSNPs, and 38 barcodeSNPs. In addition,
protein-coding genes that exhibit strong selection signatures

and are associated with the 1180 fixedSNPs were also included
in the SR4R database with detailed functional annotations
(Figure 1A). When users retrieve a SNP, such as the first
SNP ‘‘OSA01S00001362”, the genomic location and the adja-

cent gene or the gene containing the queried SNP are dis-
played. Users may also retrieve a visualized allele frequency
map in the six major subpopulations, and the six subgroups

of Ind rice (Figure 7B).
The users may also download the four panels of SNPs

along with the original genotype files for local analysis via

http://sr4r.ic4r.org/download. In addition, the ‘‘Tools” mod-
ule presents 18 handy scripts and pipelines that users may
install on their local computers for a variety of analyses,

including basic genotype processing, population diversity anal-
ysis, rice variety identification, and subpopulation classifica-
tion. For example, assuming one user may want to perform
a genotype imputation of the rice 44 K SNP chip, she or he

may first download the file ‘‘hapmapSNPs-genotype.tar.gz
(892 MB)” containing the genotypes of the 2,097,405 hap-
mapSNPs in 2556 rice accessions. Then, the user may use the

pipeline and scripts demonstrated in Figure 7C to perform
imputation on a local server. SR4R also offers two modules
of online analysis. The first module is to use a machine

learning-based method to assign the subpopulation type based

http://sr4r.ic4r.org/download


Figure 7 Representative functional modules in SR4R database

A. Genes exhibiting significant selection signatures in the corresponding subpopulations are listed in the ‘‘Selected Genes” module in the

browser. B. Allele frequencies in different subpopulations of the first hapmapSNP (SNPID: OSA01S00001362, associated gene:

Os01g0100100, position: chr01-1362, allele: Alt-A, Ref-G). C. One example of the script and pipeline for population diversity analysis. D.

The online analysis module of subpopulation classification using machine learning algorithms. E. The online analysis module of rice

variety identification using the 38 barcodeSNPs.
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on the user-submitted genotype file including no more than 20
samples. The model will return the probability of the type of
subpopulation assigned to each sample (Figure 7D). The sec-

ond module is to perform DNA fingerprint analysis. When
the user submits a genotype file containing no more than 20
samples, the model will search the accession database, and

return the top three matches of existing varieties with the num-
ber of mismatched nucleotide and heterozygosity rate dis-
played (Figure 7E). The programs and scripts for these two

modules along with demo input and output files are also avail-
able to download for local analysis of genotypes with large
number of samples.

Perspectives and concluding remarks

RVD in IC4R collects 18 million raw SNPs identified from

resequencing of 5152 rice accessions. To meet the different
demands for the rice research community and breeding indus-
try, we further generated four panels of 2,097,405 hap-

mapSNPs, 156,502 tagSNPs, 1180 fixedSNPs, and 38
barcodeSNPs with standard processing pipelines and uniform
analytical parameters (Table S3). The four panels of SNPs can
be either accessed online or downloaded for local use from the

daughter database of RVD – SR4R. The hapmapSNP panel
contains 2 million non-missing genotypes of 2556 accessions,
offering a reference HapMap for genotype imputation and

high-resolution GWAS analysis. The non-redundant 150 K
tagSNP panel is an ideal magnitude for population genetics
and evolutionary analysis for research purpose, as well as an

ideal marker pool for GS-assisted breeding in rice. For a
breeding population with about 500 F1 hybrids, 1500–15,000
markers selected from the tagSNP panel can be used to build

a GS model, reaching a satisfactory genotype-to-phenotype
prediction accuracy. The fixedSNP panel with high effective-
ness and stability can be regarded as a marker pool for various
molecular breeding practice suitable for low-budget, flexible

genotyping platforms, in terms of subpopulation classification,
seed purity analysis, and genetic background analysis. The 38
barcodeSNPs selected by MinimalMarker algorithm is an ini-

tial marker set for generating DNA fingerprints for commer-
cial rice varieties. Along with the barcodeSNP panel, two
web-based tools, one for variety identification and the other

for subpopulation classification, are offered in SR4R. In addi-
tion, the SR4R database also offers a series of standard pipeli-
nes used to construct the four sets of SNPs, and local handy

tools to perform rice variety classification, barcode develop-
ment, and other types of genetic and breeding research activi-
ties. With the incremental accumulation of population
genotype data in the National Genomics Data Center, these

bioinformatics tools can be applied to other animal or plant
species such as corn, wheat, and soybeans, for a centralized
reference HapMap and SNP panel databases for plants.
Materials and methods

Pipeline to compile hapmapSNP and tagSNP panels

The 18 million raw SNPs with genotype information of 5152

rice accessions were obtained from RVD (http://variation.
ic4r.org). Accession filtration, SNP filtration, as well as basic
statistics of SNP homozygosity and accession heterozygosity,
were performed using in-house scripts. Genotype imputation
of missing sites and phasing were performed using Beagle (ver-

sion 3.3.2) [8]. A SNP site with missing genotype was removed
if an inferred genotype with a posterior probability was <0.5.
Genomic annotation of hapmapSNPs was performed using

ANNOVAR (version 20160201) against the rice genome in
the International Rice Genome Sequencing Project (IRGSP).
Using the reported LD length of rice ranging 40–500 kb, an

LD-based SNP pruning method was used to construct the
tagSNP category using PLINK with –indep command
[15,16]. The PLINK (version 2.0) parameters were selected
based on the variance inflation factor (VIF), which recursively

removed SNPs within a sliding window of 50 SNPs and a step
size of 5 SNPs to shift the window.

Tools for subpopulation structure analysis

The tagSNPs for 2556 rice accessions were concatenated as
input sequences for constructing the phylogenetic tree using

the neighbour joining algorithm implemented in MegaCC with
pairwise gap deletion and 100 bootstrap replications [17]. The
output tree file for all 2556 rice accessions and the subtree file

of Ind rice accessions were visualized in MEGA (version 7.0)
[18]. PCA of the 2556 rice accessions was done by flashPCA
(version 2.0) [9]. Population admixture structure analysis was
done by fastSTRUCTURE (version 1.0) using the variational

Bayesian framework, k was set in the range of 2–8 to infer the
admixture of ancestors for the accessions.

Tools for genetic diversity analysis

Genetic diversity related analyses were mostly done using
PLINK (version 2.0) [16]. Genome-wide pairwise IBS calcula-

tions were performed between each pair of accessions within
the same subpopulation in order to deduce the genetic affinity,
and an IBS pairwise distance matrix was generated for each

subpopulation. The ROH analysis for each subpopulation
used a sliding window method to scan the genotype of each
accession for a given population at each marker position to
detect homozygous segments. The parameters and thresholds

applied to define ROH were set as follows: a mini-
mum ROH length of 200 kb and a minimum number of 1000
consecutive SNPs included in an ROH. Correlation coefficient

(r2) of SNPs was calculated to measure LD level for each sub-
population. The average r2 value was calculated for each
length of distance from 0–500 kb, followed by drawing LD

decay figures using an R script for each subpopulation. Popu-
lation diversity of rice varieties was measured by two indexes:
hp and Fst. Nucleotide diversity hp was used as a measurement

of the degree of genotype variability within each subpopula-
tion, while subpopulation differentiations were evaluated by
Fst for each of the cultivated subpopulations against the wild
rice subpopulation and for the cultivated subpopulations com-

pared to each other. Values of hp and Fst were calculated using
sites mode implemented in VCFtools (v0.1.16) [19].

Tools for GS analysis

Genotype and phenotype data sets of the 44 K rice
chip were downloaded from the Rice Diversity Website

http://variation.ic4r.org
http://variation.ic4r.org
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(http://www.ricediversity.org/). Genotype imputation and
phasing were then performed using Beagle (version 3.3.2),
and the site was filtered if an inferred genotype with a posterior

probability was <0.5. GS analysis was performed using RR-
BLUP mixed model implemented in R package rrBLUP (ver-
sion 4.6.1) [13] for nine well-measured phenotype traits (flow-

ering time, panicle fertility, seed width, seed volume, seed
surface area, plant height, flag leaf length, flag leaf width,
and florets per panicle) with five different feature combina-

tions. The prediction accuracy under each feature combination
was evaluated by five-fold cross validation and Pearson corre-
lation coefficient. An example of the process is as follows: the
original samples were randomly partitioned into five subsets;

of the five subsets, a single subset was retained as the valida-
tion data, and the remaining four subsets were used as training
data. This process was repeated five times, with each of the five

subsets used exactly once as the validation data. The Pearson
correlation coefficients of the predicted breeding values and
the real phenotype values were calculated for each fold.

Pipeline to compile the fixedSNP panel

hp and Tajima’ D values were calculated for the six rice sub-

populations (TeJ, TrJ, Aro, Aus, Ind, and Oru) in a sliding-
window fashion across the genome using in-house scripts.
Fst values were calculated for the five cultivated subpopula-
tions against the wild Oru subpopulation, as well as for the five

cultivated subpopulations against each other. For each pair-
wise comparison, the intersection of the top 5% windowed
hp ratios (wild subpopulation vs. cultivated subpopulation),

and the top 5% windowed Fst values correspondingly were
selected as strong selective sweep signals. Window sizes of both
100 kb and 10 kb were used to detect large or small selective

sweep regions, respectively, followed by merging the results
as the candidate selective sweep regions for each subpopula-
tion. Tajima’ D distribution was also drawn for the candidate

selective sweep regions against the whole genomes for each
pairwise comparison. Genes located within the candidate selec-
tive sweep regions were extracted for each comparison, and
GSEA was performed for each gene listed by PlantGSEA

web tools [20]. Genic SNPs located in the candidate selective
sweep regions identified from the abovementioned pairwise
comparisons were merged as fixedSNPs.

Pipeline to compile the barcodeSNP panel

The 1180 fixedSNPs were used as the initial marker set to select

the minimal number of barcodeSNPs that can maximally dis-
tinguish the 2556 rice accessions using a heuristic mode imple-
mented in MinimalMarker [7]. Three minimal sets each

containing 28 SNPs were generated, and after merging the
three sets, 38 unique SNPs were selected as barcodeSNPs for
generating DNA fingerprints for each accessions.

To identify commercialized rice varieties using the combina-

tion of 38 barcodeSNPs, seven machine learning-based meth-
ods were used: DT, KNN, NB, ANN, RF, LR-M, and LR-O
algorithms in the Python sklearn library (https://scikit-learn.

org/stable/). The precision of each model was assessed using
ten-fold cross validation method. Specifically, the original sam-
ple set was randomly partitioned into ten subsets, in which nine

subsets were used for training model and the remaining subset
was used as the testing model; this procedure was repeated ten
times and the average prediction accuracy was computed from
the overall performance of the tested models. Five one-hot

codes (10000, 01000, 00100, 00010, and 00001) label the five
subpopulations for classification using machine learning mod-
els. Then, the predicted label with the maximal probability

was compared with the original label for each sample. If the
predicted label is identical with the original label, the prediction
result was regarded as correct. Then, the ratios of positive and

negative rate were computed to plot receiver operating charac-
teristic (ROC) curves and compute AUC values.

Pipeline to compile the barcodeIndel panel

Raw Indels were identified using the IC4R variation calling
pipeline from the origin 5152 rice accessions [2]. Then, the Indels
from the 2556 rice accessions with high sequencing coverage

(depth �5) present in SR4R database were extracted using cus-
tomized Python scripts, followed by using VCFtools (v0.1.16)
[19] to filter Indels to generate a high-confidence Indel data

set, with parameters of missing rate <0.01 and MAF �0.05.
Finally, using customized Python scripts, Indels that have the
same sequence type within each subpopulation were retained

to generate the subpopulation-specific barcodeIndel panel.

Availability

SR4R is freely available at http://sr4r.ic4r.org/.
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