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Abstract

LightGBM is an ensemble model of decision trees for classification and regression
prediction. We demonstrate its utility in genomic selection-assisted breeding with a
large dataset of inbred and hybrid maize lines. LightGBM exhibits superior
performance in terms of prediction precision, model stability, and computing
efficiency through a series of benchmark tests. We also assess the factors that are
essential to ensure the best performance of genomic selection prediction by taking
complex scenarios in crop hybrid breeding into account. LightGBM has been
implemented as a toolbox, CropGBM, encompassing multiple novel functions and
analytical modules to facilitate genomically designed breeding in crops.

Keywords: Genomic prediction, Genomic selection, Machine learning, Ensemble
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Background
The rapid advancement of genotyping technology has promoted the integration of gen-

omic prediction into modern breeding programs for both animals and crops [1–5].

Predictive models built using various computational methodologies have been

employed to facilitate data-driven decision-making in terms of selecting breeding ma-

terials and designing hybridization schemes [6, 7]. As most traits subject to selective

breeding are determined by quantitative trait loci (QTLs), genomic selection (GS) has

been validated as an effective approach utilizing whole-genome variations to build gen-

omic prediction models without prior characterization of trait-associated genes [8, 9].

Among existing GS tools, ridge regression BLUP (rrBLUP) is a state-of-the-art method

that uses a linear mixed-effect model to deduce the genomic kinship of breeding mate-

rials and marker effects for phenotype prediction [10].

GS for crops is associated with many more challenges than that for animals [11].

The main factor in a GS project for crops is the phenotyping expense incurred in con-

structing a training set. In maize breeding, which mainly utilizes heterotic effects, GS
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predicts the hybrid performance of filial one (F1) generated from the crossings of inbred

lines from different heterotic pools. An incomplete diallel cross of two parental pools

each containing 1000 lines can theoretically generate one million F1 combinations,

from which only ~ 15% are planted to measure the phenotypes for training model to

predict the rest ~ 85% [12]. With the application of doubled haploid (DH) and speed

breeding (SB) technologies in the seed industry, the productivity of inbred lines per

year has been substantially increased [3–5]; however, screening on tens of thousands of

lines largely relies on genotypes [2]. Hence, novel GS methods capable of coping with

large sample sets are in high demand. Moreover, the genetic compositions of crops are

complex because of the diverse genetic origins and frequent crossings among germ-

plasms. This may cause population stratification, which significantly influences model

stability [12]. Finally, heterosis has been hypothesized as a result of non-additive effects

involving not only epistatic interactions among QTLs, but also environmental effects

[13, 14]. Therefore, linear models lack the capability to fully infer all the forms of gen-

etic effects contributing to heterosis; nonparametric methods suitable for predicting the

hybrid performance of F1s are desired for crop breeding [15–17].

Machine learning (ML) has been widely employed in Big Data analytics. It can auto-

matically learn data patterns and optimize model parameters [18, 19]. The gradient

boosting (GB) is a member of the ensemble learning paradigm, and its underlying

principle involves assembling multiple weak learners to establish a strong model; thus,

its predictability is significantly better than that of a single model [20]. As GB is a tree-

based ensemble algorithm, it is particularly capable of deciphering categorical features.

Employment of GB algorithm for GS has been previously tested in both cattle and

plants, in which GB showed better performance than random forest (RF), artificial

neural network (ANN), and convolutional neural network (CNN) [6, 19, 21]. Although

the GB and RF both adopt the ensemble paradigm, GB outperformed RF, likely because

the RF builds independent trees and averages the results from all the trees as the final

prediction, whereas the GB builds trees by boosting iterations [22, 23]. In each iter-

ation, the current tree is built based on the last tree in which the difference between

the predicted and actual values is computed and set as the predictive goal for the

current tree. Subsequently, the difference is gradually minimized after hundreds of

iterations, and the results from all the trees are summed as the final prediction. In

comparison with ANN and CNN, GB adopts a different strategy of feature extrac-

tion. GB first traverses all the features to select important nodes when building

trees, and the prediction is only based on features with a high effectiveness in clas-

sifying the samples; or, in other words, it simultaneously accomplishes feature se-

lection and prediction. Most importantly, the selected features remain in their

original form without any weight applied to them. When applying ANN or CNN

for genomic prediction, the algorithm performs feature extraction by first estimat-

ing a weight for each SNP and then computing a reformed, grand feature based on

the sum of the weighted features to represent a set of neighboring SNPs within a

predefined genomic region [24, 25]. If the region contains too many SNPs unre-

lated to the predicted trait, the effectiveness of the grand feature might be signifi-

cantly attenuated. Thus, overly excessive features may significantly reduce the

precision and stability of a neural network and may lead to model training failure

because of exploding gradients.
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One of the GB variants — LightGBM (light gradient boosting machine) — developed

by Microsoft has demonstrated superior performance in coping with extremely large,

structured datasets with an ultra-high training speed [23]. In this work, we evaluated

the capability of LightGBM for GS prediction in maize breeding. Our results demon-

strate the extraordinary performance of LightGBM in terms of its precision, model sta-

bility, and computing efficiency. The LightGBM algorithm was implemented as a

toolbox named CropGBM (Genomic Breeding Machines for Crops) to facilitate geno-

mically designed crop breeding.

Results
Training and testing samples

The dataset for model evaluation included 8652 samples of F1 hybrid maize with mea-

sured phenotypes of days to tasseling (DTT), plant height (PH), and ear weight (EW),

generated from the crossings of a maternal pool and a panel of 30 paternal testers fol-

lowing a North Carolina-II design (Methods) [26]. The maternal pool was a previously

reported CUBIC (Complete-diallel design plus Unbalanced Breeding-like Inter-Cross)

population containing 1428 inbred lines, developed from 24 elite founder lines repre-

senting local-adaptive alleles [27]. The paternal pool contained 30 tester lines covering

six major heterotic groups, mostly improved oversea germplasms representing foreign

advantageous alleles. The population is thus composed of thirty sets of paternal half-

sibling subpopulations (called F1s for short) exhibiting diverse patterns of heterosis ef-

fects of hybrid maize. The data structure of the thirty F1 subpopulations is illustrated

for designing different predictive frameworks to objectively evaluate the model preci-

sion and stability (Fig. 1a). The 8652 samples contained two complete F1 populations

consisting of 2856 hybrids between the 1428 maternal lines and the 2 paternal tester

lines Zheng58 and Jing724. Crossings of the 207 maternal lines and 30 paternal testers

generated 6210 F1s exhibiting strong population stratification in genotypes, due to the

diverse genetic origins of the maternal founders and paternal testers (Fig. 1b, Add-

itional file 1: Fig. S1). To remove systems bias in phenotypic variations between sub-

populations, the phenotypic values were normalized to z-scores within each F1
population, for which relative rankings were used to represent the absolute values

(Additional file 1: Fig. S2). As a set of non-redundant features is crucial for ML to avoid

dimension explosion, 32,559 haplotypic tag single-nucleotide polymorphisms (SNPs)

evenly distributed in the genome were used as genotype features (Methods).

Evaluation on basal ML models

To ensure an objective assessment of ML methods in GS, we followed the procedure of

constructing an ML system covering feature selection, model selection, model evalu-

ation, model optimization, feature importance analysis, model interpretation, and fi-

nally, software benchmark testing. We first performed a series of benchmark tests

between rrBLUP and other 15 previously published GS tools using the dataset of the

1428 maternal lines (Methods). rrBLUP exhibited superior prediction precision and

computing efficiency, and it was then selected as the representative of statistical models

to compare with ML methods (Additional file 1: Fig. S3). As different ML algorithms

may be suitable for different predictive goals and data features, we selected five
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commonly used basal ML models for the initial evaluation and compared them with

rrBLUP, namely support vector regression (SVR), random forests (RF), artificial neural

network (ANN), k-nearest neighboring (KNN), and gradient boosting (GB) regression

tree. Evaluation of the five MLs models were under the optimal hyperparameter tuned

by the function of grid search (Additional file 1: Table S1). The 6210 F1s with field-

measured phenotypes were mainly used for evaluating the model precision. Cross-

validation (CV) was performed using the following framework repeated 30 times to

generate a distribution of the precision (r, Pearson’s correlation coefficient) for each

method: namely 29 subpopulations of F1s as training samples to predict the rest one

using the 32,559 SNP as features. As the precisions of GB and rrBLUP were equivalent

and both outperformed other four ML methods (Fig. 1c), GB was then selected for a

further comparison with rrBLUP.

The predictive frameworks with different ways of partitioning the samples may influ-

ence model stability, and inappropriate partitions may lead to incorrect overfitting be-

cause of population stratification. Particularly for the hybrid breeding of maize, which

mainly relies on the crossing between distantly related heterotic groups, the predictive

framework is a critical factor in ensuring model stability. To address this issue, the

Fig. 1 Evaluation on the five basal machine learning (ML) models. a Data structure of the 42,840 F1s
generated from the crossings of 1428 maternal lines and 30 paternal testers. The training samples include a
total of 8652 F1s (207 maternal lines × 28 paternal testers, 1428 maternal lines × Zheng58, and 1428
maternal lines × Jing724). b Classification of the 6210 F1s by the OPTICS clustering algorithms. c
Comparison of the five commonly used ML methods, namely support vector regression (SVR), random
forests (RF), artificial neural network (ANN), k-nearest neighbor (KNN), and gradient boosting (GB) algorithms.
GB exhibits precision and stability equivalent to that of rrBLUP
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training-to-testing sample ratio was set to 5:1 using four different frameworks: when

the training samples covered the genotypes of both maternal and paternal (M and P)

siblings, only maternal (M only) siblings, only paternal (P only) siblings, and neither

parental (Neither) siblings in the testing samples (Fig. 2a). As shown in Fig. 2b, the

training samples covering both parental genotypes exhibit the highest precision,

followed by those covering only maternal genotypes; precisions greatly drop when the

training samples only cover paternal genotypes or neither of parental genotypes. Par-

ticularly for EW, the precision drops nearly twofold when neither parents are covered

in the training samples. We then evaluated the model stability on two sets of fully phe-

notyped Zheng58 and Jing724 F1s, using one population to train the models and predict

the other one. The precision of rrBLUP was slightly better than that of GB, likely be-

cause the maternal lines are closely related siblings from the same CUBIC population

with explicit pedigree (Fig. 2c).

Evaluation on the LightGBM model

An initial evaluation of the basal MLs indicated that ensemble learning with the GB

paradigm is the optimal method, making it worthy of further evaluation and compari-

son with the optimized algorithms. Three more GB variants, namely LightGBM,

XGBoost (eXtreme Gradient Boosting), and CatBoost (Categorical Boosting), were

compared with GB and rrBLUP in parallel. We utilized the phenotyped 8652 F1s as the

training samples to first evaluate the fitting ability of the five models. As shown in Fig.

3a and b, LightGBM has the highest fitting ability compared to the other four methods,

and consumes only one third of the memory used by rrBLUP. Although CatBoost ranks

as the second method in terms of precision, it consumes almost 100-folds of CPU time

than LightGBM.

To evaluate the model stability of rrBLUP and LightGBM, we utilized a global collec-

tion of a core germplasm containing 527 lines of tropical, subtropical, and temperate

maize [28] (Additional file 1: Fig. S4). The 527 lines were crossed with Zheng58 and

Mo17 to generate two F1 populations with field-measured phenotypes of DTT, PH, and

EW. Model evaluations were carried out using six predictive frameworks (E1 to E6) to

compare LightGBM and rrBLUP (Additional file 1: Fig. S5a). While reciprocally using

the 1428 Zheng58 (Jing724) F1s as the training samples to predict the 1428 Jing724

(Zheng58) F1s (E1 and E2), rrBLUP showed slightly higher precision than LightGBM.

As for the reciprocal evaluations (E3 and E4) between Zheng58 and Mo17 F1s,

LightGBM outperformed rrBLUP overall for DTT and PH (Additional file 1: Fig. S5b).

While equally partitioning each F1 population to use one half of the samples as the

training set to predict the other half (E5 and E6), the model precision could be im-

proved; LightGBM was slightly better than or equal to rrBLUP. These results indicate

that under different genetic backgrounds, the two methods produce relatively equiva-

lent precision results when using different predictive frameworks.

Subsequently, we enlarged the dataset by combining the 6210 F1s reciprocally with

the 1221 Zheng58 (Jing724) F1s as the training samples to predict the 1221 Jing724

(Zheng58) F1s. Because of the significant increase in the genetic complexity of the 7421

training samples, the influence of population stratification must be considered. One

possible solution is to include parental phenotypes as additional features. As expected,
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the inclusion of additional features significantly improves the precision of LightGBM,

from 0.538 to 0.686 (DTT), 0.518 to 0.687 (PH), and 0.386 to 0.400 (EW), on average

for the two F1 populations (Fig. 3c).

When using any GS tool, the genotypic characters must be converted to numeric fea-

tures. A common way of conversion is based on the allele frequency of SNP in a desig-

nated population, normally using 0, 1, and 2 to represent homozygous major alleles,

heterozygous alleles, and homozygous minor alleles, respectively. Because the coding

scheme for multi-allelic SNPs is complicated for rrBLUP, usually only bi-allelic SNPs

are retained in the genotype file. If the species has a polyploid genome, the coding

scheme is even more complicated than that of a diploid genome. LightGBM may em-

ploy an alternative coding scheme which converts the ten states of genotypic characters

to ten types of numeric features for a diploid species (Methods). Once the conversion

is determined for a fixed coding scheme, LightGBM may be directly applied for GS. On

the same dataset shown in Fig. 2c, LightGBM generated exactly the same predicted

values when using the two coding schemes (Fig. 3d). Therefore, the novel coding

Fig. 2 Evaluations of GB and rrBLUP precision on different predictive frameworks. a Schematic illustration of
the four ways partitioning the training and testing samples. M and P: training samples cover the maternal
and paternal genotypes of testing samples. M only: training samples only cover the maternal genotypes of
testing samples. P only: training samples only cover the paternal genotypes of testing samples. Neither:
training samples cover neither of the maternal and paternal genotypes of the testing samples. b
Evaluations of GB and rrBLUP precision on the four different predictive frameworks. c Evaluations of GB and
rrBLUP precision between two fully genotyped F1 populations. Left three columns: 1428 Zheng58 F1s as
training samples to predict Jing724 F1s; Right three columns: 1428 Jing724 F1s as training samples to
predict Zheng58 F1s
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scheme of LightGBM may greatly make the step of processing genotype data easier, es-

pecially convenient for the application of GS on a polyploid species.

Sampling rate of training data determines GS precision

In a commercial pipeline of maize single-hybrid breeding, hybridization of inbred lines

selected from maternal and paternal pools may generate large amount of F1 combina-

tions. Breeders usually select 10 to 15% of the theoretical combinations to measure

phenotypes as a training set, and predict the rest 85 to 90% via GS [12]. This may result

in insufficient coverage of the genotypes of testing samples by a small proportion of

training samples. Thus, estimation of GS precision under different sampling rates of

training data is essential to ensure ideal efficiency of line selection for a population. To

address this issue, we performed a series of benchmark tests on the population of 6210

F1s, to compare rrBLUP and LightGBM under four scenarios by setting different ratios

of training and testing samples. In scenario 1, the size of testing set (621 sample) holds

constant and the number of training samples gradually decreases from 5589 to 62, in

order to set 9 ratios of training vs. testing samples. As shown in Fig. 4a, the ratio of 1:1

appears to be a turning point from which precision and stability of both methods begin

to drop, but LightGBM significantly outperforms rrBLUP. This result indicates the

Fig. 3 Comparison between LightGBM and rrBLUP. a Comparison of three variants of GB algorithms,
namely LightGBM (LGB), XGBoost (XGB), and CatBoost (CB), with GB and rrBLUP in terms of the model
fitting ability. b Comparison between the five methods in terms of the computing time and memory usage.
c Improvement in the model precision of rrBLUP (rrBLUP+) and LightGBM (LightGBM+) via the addition of
parental phenotypes as additional features. Left panel: 6210 F1s + 1221 Zheng58 F1s as training samples to
predict 1221 Jing724 samples. Right panel: 6210 F1s + 1221 Jing724 F1s as training samples to predict 1221
Zheng58 F1s. d Use of two coding schemes (0, 1, 2 and 0–9) for converting genotypic characters to
numeric features to compare the precision of LightGBM. Predictive framework: 6210 F1s + 1221 Jing724 F1s
as training samples to predict 1221 Zheng58 F1s
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advantage of LightGBM over rrBLUP when the sampling rate of training data is low. In

scenario 2, the size of training set (621 samples) holds constant and number of testing

samples gradually increases from 62 to 5589. Model precisions evaluated at the 9 ratios

are not significantly different for both methods, which are about 0.63, 0.74, and 0.45

for DTT, PH, and EW on average, respectively (Fig. 4b). In scenario three, the ratio of

9:1 (training vs. testing) holds constant, and the population size gradually decreases

Fig. 4 Sampling rate of training data determines baseline precision. a The number of 621 testing samples
remained fixed, and nine sets of training samples with different numbers were randomly selected from the
rest 5589 samples. Precisions of rrBLUP and LightGBM were then compared at the nine ratios of training
and testing samples. b The number of 621 training samples remained fixed, and nine sets of testing
samples with different numbers were randomly selected from the rest 5589 samples. c The ratio of 9:1 of
training-to-testing samples remained fixed, and different numbers of samples were randomly selected from
the total 6210 samples. Precisions of rrBLUP and LightGBM were then compared at the nine sets of training
and testing samples. d The ratio of 1:9 of training-to-testing samples remain fixed, and different numbers of
samples were randomly selected from the total 6210 samples
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from 6210 to 690. Along with the decrease of population size, precisions of both

methods gradually drop starting from about 0.75, 0.79, and 0.65 for DTT, PH, and EW,

respectively; but precisions of the two methods are equivalent to each other (Fig. 4c).

In scenario 4, the ratio of 1:9 (training vs. testing) holds constant, and the population

size gradually decreases from 6210 to 690. Along with the decrease of population size,

precisions of both methods gradually drop starting from about 0.63, 0.72, and 0.48 for

DTT, PH, and EW, respectively; but the overall precision of LightGBM is better than

that of rrBLUP (Fig. 4d).

The above analyses collectively indicate the importance of sampling rate of training

data in determining the baseline precision of GS prediction, which is a critical factor

needed to consider when designing a GS project. When the size of training set is fixed

at 621 samples accounting for 10% of the population, the baseline precisions for DTT,

PH, and EW are 0.637, 0.716, and 0.467 averaged from the results of LightGBM predic-

tion in the four scenarios; in contrast, the baseline precisions for the three traits are

0.623 (DTT), 0.706 (PH), and 0.503 (EW) for rrBLUP (Additional file 1: Table S2). We

may also conclude that LightGBM may outperform rrBLUP, when the sampling rate is

lower than 10% and the size of training samples is much smaller than that of testing

samples.

LightGBM performs classification prediction

LightGBM can also perform classification prediction with binary or multi-class labels

suitable for qualitative traits. To test LightGBM for classification tasks, we categorized

the 1428 Zheng58 F1s into three classes of samples with early (top 25% DTT), moder-

ate (25 to 75% DTT), and late (lowest 25% DTT) flowering times. The two-class classi-

fication with fivefold CVs showed excellent discrimination of early and late-flowering

F1s, as reflected by a high area under the curve (AUC) value of 0.878 (Fig. 5a and Add-

itional file 1: Fig. S6a). In contrast, the AUC of discriminating early- and late-flowering

F1s by rrBLUP was 0.704. As for the three-class classification by LightGBM, the preci-

sions for discriminating early, moderate, and late-flowering F1s were 0.705, 0.575, and

0.763, respectively; while by rrBLUP, AUCs for the three corresponding classes were

0.533, 0.614, and 0.618 (Fig. 5b and Additional file 1: Fig. S6a).

In breeding practice, breeders typically make decisions via binary judgement, even if

a trait is quantitative. For instance, in test-crossing experiments, breeders typically se-

lect the top 15 to 25% lines based on the general combining ability (GCA) of the grain

yield computed on the basis of the average performance of their F1s crossed with two

or three testers. To test whether LightGBM can assist line selection, the 1428 CUBIC

lines were categorized into three sample classes with high (top 25%), moderate (25 to

75%), and low (lowest 25%) GCAs of EW computed based on the F1s crossed with

Zheng58 and Jing724 (Methods). Subsequently, two-class and three-class classifications

were performed to evaluate the model precision. While the model achieved a high pre-

cision with AUC = 0.793 for the two-class classification, the precisions for discriminat-

ing the samples with high, moderate, and low GCAs were 0.723, 0.639, and 0.728,

respectively (Fig. 5c, d and Additional file 1: Fig. S6b). In contrast, AUC for two-class

classification by rrBLUP was 0.678, and AUCs for classifying high, moderate, and low

GCAs by rrBLUP were 0.448, 0.544, and 0.538, respectively. These results confirm the
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effectiveness of LightGBM in performing classification prediction that can facilitate

decision-making by binary judgement for breeders.

Interpretation of highly effective SNPs in biology

During model training, LightGBM infers the predictive effectiveness for each SNP by

computing the information gain (IG) value to represent feature importance. The higher

the IG, the more effective the genotype of an SNP in discriminating the phenotypes. To

validate the effectiveness of the features recognized by LightGBM, ten sets of features, in-

cluding the top 12 to 4000 SNPs sorted by IGs generated from model training on 1428

maternal lines, were compiled (Methods). Simultaneously, the same number of SNPs for

each feature set were randomly selected from the genome as controls. With the decreased

numbers of LightGBM-selected SNP from 32,559 to 96, precisions for the three traits

Fig. 5 Performance of classification prediction by LightGBM and rrBLUP. a Comparison on classifying
Zheng58 F1s with early and late DTT by LightGBM and rrBLUP. The numbers in the brackets are the AUC
(area under the curve) values to indicate model precisions of the two methods. b Comparison on
classifying Zheng58 F1s with early, moderate, and late DTT. c Comparison on classifying maternal lines with
high and low GCA of EW. d Comparison on classifying maternal lines with high, moderate, and low GCA of
EW. The computation of the general combining ability (GCA) value for each maternal line is based on the
EWs of Zheng58 and Jing724 F1s
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gradually dropped without great difference, compared to the results when using genome-

wide SNPs (Fig. 6a). In contrast, the precisions dropped more drastically with the decrease

in the number of randomly selected SNPs. Hence, the feature importance analysis by

LightGBM is a practical utility to generate condensed marker panels (e.g., 96 to 384

markers) for a designated pool of breeding materials, enabling the use of a sample-

multiplexing solution, such as the GBTS (genotyping by targeted sequencing) platform

[29], to lower the genotyping expense for large breeding populations.

Presumably, the decision trees generated by LightGBM from the boosting iterations

may accurately capture the trait-associated SNPs that significantly contribute to pheno-

type variations. To test our assumption, we compared the genomic distribution of the

IGs of the SNPs with the GWAS signals detected across the 1428 maternal lines

(Methods). As expected, the overall IG distribution was in accordance with the GWAS

signals (Fig. 6b). The top two SNPs, chr8.s_123039570 and chr8.s_128239316, fell into

the QTLs of ZCN8 and RAP2.7, respectively, which form the previously reported

RAP2.7–ZCN8 flowering-time regulatory module [30, 31]. Therefore, the SNP chr8.s_

123039570 is perhaps associated with genomic variations that may influence ZCN8 ex-

pression, as it encodes the florigen in maize to directly initiate floral transition. To test

whether the genotype (AA and GG) of chr8.s_123039570 correlates with ZCN8 expres-

sion, we examined the expression levels of ZCN8 in 412 CUBIC lines divided into

ZCN8-AA (268 lines) and ZCN8-GG (144 lines) groups. As expected, both the DTT

phenotypes and ZCN8 expression concordantly exhibited a significant difference be-

tween the two groups (Fig. 6c). Subsequently, we compared the IG distribution and

GWAS signals of PH and found that the top first (chr1.s_257839283) and second

(chr3.s_153816034) SNPs fell into the QTLs of BRD1 (Brassinosteroid C-6 oxidase 1)

and MADS69, respectively, and a moderate SNP (chr1.s_202563972) fell into the BR2

(Brachytic2) QTL (Fig. 6d). While BRD1 and BR2 have been functionally characterized

in regulating plant height, MADS69 is a MADS-box transcription factor functioning

upstream of the RAP2.7–ZCN8 module to regulate the flowering time [32–34]. To test

the correlation between chr1.s_257839283 (CC and TT), PH phenotypes, and BRD1 ex-

pression, the 412 CUBIC lines were divided into groups of BRD1-CC and BRD1-TT

containing 96 and 316 lines, respectively. Similar to the result obtained for DTT, both

the PH phenotypes and BRD1 expression were significantly different between the two

subgroups (Fig. 6e).

Unexpectedly, the SNP chr3.s_153816034 associated with the QTL of MADS69 was

recognized by LightGBM on PH, which were moderately detected by GWAS of DTT

but undetected by GWAS of PH. MADS69 promotes flowering by activating the flori-

gen ZCN8; however, its recognition by LightGBM on PH is worthy of further investiga-

tion. Based on the genotype of chr3.s_153816034 (CC and TT), the CUBIC lines were

divided into MADS69-CC (124 lines) and MADS69-TT (317 lines) groups, in which the

expression of MADS69 between the two groups exhibited a significant difference (p =

0.017). Correspondingly, the MADS69-TT group with a higher expression of MADS69

showed phenotypes of significantly shorter PH and earlier DTT than the MADS69-CC

group (Additional file 1: Fig. S7a). Therefore, there could be a possible interaction be-

tween BRD1 and the MADS69-ZCN8 regulatory module that coordinates the balance

between PH and DTT; this was probably overlooked by GWAS. As the 1428 CUBIC

lines were derived from the 24 founder lines, we examined the expression levels of
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BRD1, MADS69, and ZCN8 in correlation with the DTT and PH phenotypes in the leaf

tissues in the maize V1 developmental stage. Among the 23 lines with homozygous al-

leles, 18 lines bearing BRD1-TT showed lower expression of BRD1 but higher expres-

sions of ZCN8 and MADS69, compared with the 5 lines bearing BRD1-CC, which were

Fig. 6 Interpretation of highly effective SNPs recognized by LightGBM. a Ten grades of SNPs selected based
on ranked IGs from high to low are used as features to test the precisions of LightGBM on DTT, PH, and
EW, in parallel comparison with the use of 32,559 SNPs (All) and the same number of SNPs randomly
selected from the genome. For each grade of the SNP number, fivefold CVs are performed to generate a
distribution of the correlations. The red horizontal lines represent the precisions of rrBLUP on DTT, PH, and
EW when using all the 32,559 SNPs for prediction. b Comparison of the IG distribution of the selected 384
highly effective SNPs with the GWAS signals on DTT across the 1428 maternal lines. c The 411 maternal
lines are divided into AA and GG subgroups based on the genotype of the top SNP chr8.s_123039570 in
the QTL of ZCN8. The two subgroups of lines exhibit significantly different expressions of the associated
gene ZCN8 (p = 0.0116, t-test) and DTT phenotype (p = 1.94e−06, t-test). d Comparison of the IG
distribution of the selected 384 highly effective SNPs with the GWAS signals on PH across the 1428
maternal lines. e The 411 maternal lines are divided into CC and TT subgroups based on the genotype of
the top SNP chr1.s_257839283 in the QTL of BRD1. The two subgroups of lines exhibit significantly different
expressions of the associated gene BRD1 (p = 5.35e−04, t-test) and PH phenotype (p = 3.63e−09, t-test)
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in concordance with the phenotypes of the 18 lines showing shorter PH and earlier

DTT (Additional file 1: Fig. S7b). This correlation is consistent with the fact that a high

expression of MADS69 may promote early DTT and cause short PH as a result of the

early termination of vegetative growth. In summary, these analyses collectively indicate

that the highly effective SNPs recognized by LightGBM are mostly trait-associated

markers, somehow related to genomic variations responsible for regulating the causal

genes and related phenotypes.

LightGBM facilitates gene mining by enhancing GWAS sensitivity

GWAS is an efficient way to identify trait-associated genes and understand the genetic

architecture underlying a trait. With the rapid advancement of next-generation sequen-

cing, genotyping expense has been significantly reduced, while phenotyping has become

the bottleneck for GWAS in the case of large-scale populations. For quantitative traits

controlled by multiple genes, the population size is particularly critical for GWAS de-

tection power [35]. Presumably, if genomic prediction is precise, the predicted pheno-

types may be used for unmeasured samples to carry out a GWAS analysis. Thus,

phenotyping expense can be saved; however, an ideal population size should be en-

sured. To test this assumption, the phenotypes of DTT, PH, and EW of 1221 Zheng58

F1s were predicted by LightGBM using the 7431 samples (6210 F1s + 1221 Jing724 F1s)

as training set. Then, we compared the GWAS signals derived from the 7431 samples

with observed phenotypes and the 8652 samples containing the 1221 F1s with predicted

phenotypes. As for the DTT trait, both MADS69 and ZCN8 peaks were detected in the

two populations, and the 8652 samples exhibited enhanced SNP effects, likely due to

the augmentation of population size (Fig. 7a, upper panels). Similarly, GWAS of PH

and EW also exhibited enhanced signals associated with the BRD1 and MADS69 genes

(Fig. 7a, middle and lower panels).

Furthermore, we tested the predictability of LightGBM on the contents of metabolic

compounds that may be considered a type of qualitative trait determined by few bio-

synthetic enzymes. The contents of the two uncharacterized metabolites (5.47_

216.1009 and 3.32_594.1573n) measured in a core germplasm collection of 266 lines

[36] were used as the phenotypes to predict their contents in another 509 unmeasured

lines. Subsequently, the GWAS of the two metabolites was performed individually in

the 266 lines and 775 (509 + 266) lines. As for 5.47_216.1009, one significant peak was

detected in the 266 lines with the measured contents, corresponding to a candidate

gene Zm00001d002103 encoding β-ketoacyl-ACP synthase involved in the biosynthesis

of fatty acid based on CornCyc annotation (Fig. 7b, left panel). In the 755 lines includ-

ing the 509 samples with the predicted contents, the same peak associated with gene

Zm00001d002103 was found with enhanced signals. The GWAS of the metabolite

3.32_594.1573n in the 266 lines detected a cluster of tandemly duplicated genes encod-

ing UDP-glucosyltransferases (ZmUGTs), showing the same GWAS signals in the 775

lines containing predicted samples (Fig. 7b, right panel). The three ZmUGTs have been

previously detected by metabolome-GWAS in maize, revealing their involvement in fla-

vonoid biosynthesis [37] (Additional file 1: Fig. S8). Therefore, GWAS identification of

the genes originally detected in the training population not only validates the precision

of LightGBM, but also demonstrates the utility of the GS strategy for gene mining on

Yan et al. Genome Biology          (2021) 22:271 Page 13 of 24



unexploited germplasm with significantly reduced phenotyping expense. However, it

should be noted that this strategy may be only applicable to the trait with high predict-

ability, and the QTL effect might not be accurately estimated using predicted pheno-

type. Thus, this approach is only suitable for a rough mapping of trait-associated QTLs

on unexploited germplasm to identify genomic regions sharing similar haplotypic pat-

terns between the training and predicting populations.

Implementation of LightGBM to facilitate genomic breeding in crops

LightGBM is among the most popular ML algorithms for Big Data analytics in the in-

dustry, owing to its ultra-high efficiency in handling structured data with high feature

dimensions and large sample sizes [23]. In the seed industry, a breeding program may

last for years, accumulating tremendous amount of genotype and phenotype data that

allow implementing data-driven decision-making to facilitate crop breeding. Our

Fig. 7 Enhancement in GWAS sensitivity by LightGBM prediction. a GWAS signals on DTT, PH, and EW were
enhanced after adding the 1221 F1s with predicted phenotypes to the 7431 training samples with observed
phenotypes. The blue, green, and red dashed lines represent the p values of 1e−5, 1e−6, and 2.2e−7,
respectively. b GWAS signals on metabolic compounds of 5.47_216.1009 (left panel) and 3.32_594.1573n
(right panel) were enhanced after adding the 509 lines with predicted phenotypes to the 266 training
samples. The blue, green, and red dashed lines represent the p values of 1e−5, 1e−6, and
2.2e−7, respectively
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analysis showcased the capability of ensemble learning in GS-assisted breeding. There-

fore, we utilized LightGBM as the kernel algorithm to develop a toolbox, namely

CropGBM, for streamlined GS prediction to facilitate genomically designed crop breed-

ing. CropGBM includes three main analytical modules covering the steps of genotype

analysis, phenotype analysis, and GS prediction. The first module performs a series of

processing steps on genotype data and converts genotypic characters to numeric fea-

tures (Fig. 8a). Subsequently, the sample population structure is analyzed using PCA, t-

SNE, and OPTICS (Ordering Points to identify the clustering structure) algorithms

(Methods). While the PCA and t-SNE are commonly used methods for visualizing the

population structure, the utility of OPTICS is that it can quantitatively evaluate the

genetic distance within and between subpopulations and perform nonlinear clustering

of samples (Fig. 1b). The results of OPTICS may facilitate the design of an optimal pre-

dictive framework by appropriately partitioning the samples into training, testing, and

predicting sets, which can help maximally avoid model overfitting due to the influence

of population stratification. The second module performs basic statistics and data

visualization on the phenotypes of the samples (Fig. 8b). If population stratification oc-

curs in the phenotype between subpopulations, z-score normalization within each sub-

population is highly recommended. The third module performs GS prediction for

either regression or classification analysis, supported by hyperparameter tuning using

Fig. 8 CropGBM offers streamlined analysis to assist genomic design breeding. a Genotype analytical
module includes genotypic data analysis pipeline, visualization of population structure, and OPTICS analysis
to facilitate the design of an optimal predictive framework. b Phenotype analytical module includes basic
statistics of phenotypic data and normalization function. c G2P prediction module utilizes LightGBM as the
kernel algorithm to construct a predictive model and perform related ML analysis
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grid search for model optimization (Fig. 8c). During model training, a feature selection

is performed to recognize highly effective SNPs for designing highly condensed marker

panels.

CropGBM supports acceleration by multi-threading and GPU computing. As the fea-

ture number and sample size influence the performance of LightGBM, we tested its

computing time and memory consumption with different magnitudes of simulated data

while comparing it with rrBLUP. The benchmark testing showed that the performance

of rrBLUP is restricted by the sample size but insensitive to the SNP number. Training

rrBLUP on the 50,000 samples with 10,000 SNPs took over 17 h and 116 GB of mem-

ory, whereas LightGBM required only 8 min and 20 GB of memory on the same server

(Additional file 1: Table S3). On 100,000 samples, rrBLUP failed to train the model, but

LightGBM completed the training in 15min with 40 GB of memory. If GPU acceler-

ation was enabled, the training time was shortened to only 4 min on 100,000 samples.

We also tested BLUPF90, a widely used free GS tool in animal breeding, whose speed

performance has been maximized in exchange of increased memory usage [38]. The

benchmark test was performed on 25,000 samples on the same sever for testing rrBLUP

and LightGBM, as this number of genotyped samples is the upper limit of population

size that BLUPF90 can take. BLUPF90 spent 45 min and consumed 36 GB memory to

accomplish model training. Therefore, LightGBM features superior capability of

exploiting extremely large datasets with an ultra-high efficiency.

Discussion
Accelerated crop breeding refers to the integration of multifaceted technologies, includ-

ing doubled haploid (DH) techniques, speed breeding (SB), genomic selection (GS), and

genome editing [2–5]. Owing to the fast advance of DH and SB techniques, a seed

company may produce tens of thousands inbred lines per year. With greatly reduced

genotyping expense, genotype-based screening of superior lines by GS model has be-

come an essential component in modern breeding programs for major crops like maize,

rice, wheat, and soybeans. As a breeding program may last for multiple years, the mag-

nitude of training data, including genotypes and phenotypes of F1 hybrids and inbred

lines, may be considerably high. Most popular GS tools, such as rrBLUP, Sommer,

BLUPF90, and ASReml, employ mixed linear model (MLM) for prediction and con-

sume a considerable amount of computing resource to solve the model [10, 38, 39].

Therefore, ultra-efficient ML techniques have been desired to facilitate data-driven

decision-making in crop breeding. To this end, we assessed multiple ML algorithms in

this work and determined LightGBM as the optimal solution for GS in terms of both

computing efficiency and prediction precision. On hundreds of thousands of samples,

LightGBM can complete model training in minutes on a desktop server, particularly

when GPU acceleration is enabled. The excellent performance of LightGBM might be

algorithmically attributed to its main difference in tree construction from other GB al-

gorithms like GBDT, XGBoost, and CatBoost. LightGBM adopts the strategy of leaf-

wise tree growth which identifies the “best” leaf with the highest gain and only splits

the best leaf, resulting in an asymmetrical tree. In contrast, other GB variants grow a

tree level-wise, meaning that each node at the same level is split to child nodes. A tree

structure built by leaf-wise growth may better reflect genotypic interactions between

biologically related genes than a tree by level-wise growth. This may explain its higher
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precision of LightGBM than other GB variants. For example, the genotype (AA and

GG) of Gene-X separates the total samples into AA and GG branches exhibiting

phenotypic variations; the samples in the AA branches are further separated by the

genotype of (TT and CC) of Gene-Y, while no separation occurs on the GG branch.

The likely biological principle underlying this scenario is that Gene-Y may execute a

stronger function under the AA background of Gene-X rather than under the GG

background. Thus, a putative interaction between Genes X and Y may exist, probably

explained by a nonlinear epistasis effect. Subsequently, if the population is sufficiently

large, genome-wide epistatic interactions might be accumulatively learned by

LightGBM. The resulting tree presumably resembles to a network of causative genes

determining a trait.

Because of the abovementioned merits of LightGBM, we then implement it as a one-

stop toolbox CropGBM. In addition to the core GS function, it also integrates multiple

novel features and analytical functions, such as genotype and phenotype data prepro-

cessing and recoding, dimensionality reduction and population visualization via PCA

and t-SNE algorithms, sample classification via K-means and OPTICS clustering, fea-

ture selection via information gain (IG) analysis to assist marker design, GPU-enabled

acceleration, and so on (Additional file 1: Table S4). Inclusion of diverse utilities in

CropGBM is to ensure the best performance of GS prediction, considering the complex

scenarios in crop hybrid breeding.

Our work followed a standard procedure whereby an ML system is built and included

a series of assessments on the factors influencing the precision and stability of a pre-

dictive model. These assessments are critically important and highly recommended to

perform prior to carry out a GS task in crop breeding, as model performance may vary

by different species, populations, and traits [6]. Using a compiled dataset of genotypes

and phenotypes in six plant species [6], we compared LightGBM with the other 11 GS

tools on predicting the trait of plant Height (HT) (Additional file 1: Fig. S9a).

LightGBM ranked as the top one algorithm in Rice and Soy, but its precision (r = 0.40)

was lower than that of rrBLUP (r = 0.44) in maize. One possible reason is that the 391

inbred lines in the core germplasm represent a wide range of genetic diversity as the

panel contains temperate maize, tropical maize, popcorn maize, sweet maize in Amer-

ica, and some exotic maize [40]. rrBLUP adopts maximum-likelihood algorithm to esti-

mate fixed effects and SNP effects that are used to predict phenotypes from genome-

wide SNPs. In contrast, LightGBM scans the total feature set to select a small number

of highly effective SNPs to perform prediction. If the complexity of the population is

too high, the limited number of SNPs selected by LightGBM may not sufficiently quan-

tify all the genetic variations contributing to the trait, thus lowering the prediction pre-

cision. Therefore, LightGBM is more effective on breeding population without severe

population stratification, such as the paternal half-sibling population as we used in this

study. In actual practice of employing GS in crop breeding, breeders also have to con-

sider the cost spent on phenotyping training samples which account for a small portion

(usually 10 to 15%) of the total samples. Thus, it is highly necessary to estimate the cor-

relation between prediction precision and sampling rate in advance, so that precision

and cost may be optimally balanced. In addition, feature dimension is also an important

factor to consider when building a ML system, as excessive SNP features may not only

cause unnecessary computing cost but also lead to dimension explosion for certain ML
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algorithms. Selection of the optimal number of SNPs also depends on the genetic diver-

sity of a population. For instance, the germplasm panel with broad genetic diversity re-

quires more features (~ 20,000 SNPs) than the CUBIC population (~ 3000 SNPs) to

achieve an acceptable precision (Fig. 6a and Additional file 1: Fig. S9b).

Conclusion
Various speed breeding techniques have accelerated the production of inbred lines in

major crops like maize, rice, wheat, and soybeans, enforcing the employment of gen-

omic prediction techniques, such as the genomic selection (GS) model, to assist selec-

tion of superior lines or hybrids. LightGBM is an ensemble learning framework, which

adopts the strategy of leaf-wise tree growth to construct decision trees and features ul-

trafast efficiency in coping with large dataset. We implemented LightGBM as a one-

stop toolbox CropGBM to assist the employment of GS in crop breeding. CropGBM

exhibits superior performance in coping with large sample sizes, which may help ac-

complish model training on hundreds of thousands of samples in a matter of minutes.

It also includes novel features and analytical modules to cover multiple aspects of geno-

type and phenotype data analysis, population genetic analysis, feature importance ana-

lysis, and GS prediction. These functions may ensure the best performance of GS

prediction, considering the complex scenarios in crop hybrid breeding. We also proved

that the intrinsic mechanism of ensemble learning in GS prediction is interpretable in

biology, although an ML model has been referred to as a black box. This is based on

the results showing that the highly effective SNPs selected by LightGBM exhibit signifi-

cantly correlated divergence in the genotypes, phenotypes, and expressions of trait-

associated genes. Thus, these correlations can form a theoretical basis for implementing

data-driven genomic design for accelerated breeding in crop species.

Methods
Genotype and phenotype data

Liu et al. previously described the development of the maternal CUBIC pool including

the 1428 inbred lines crossed from the 24 founder females [27]. A total of 4,549,828

high-quality SNPs called from the whole-genome resequencing of the 1428 CUBIC

lines and 30 paternal testers were used for the GWAS analysis in Fig. 7. The procedure

of SNP calling and genotype processing of the 1458 parental lines has been described

by Liu et al. [27]. To reduce the feature dimensions, the 32,559 SNPs used for the GS

and ML prediction were selected on the basis of the common SNPs between the 4.5

million SNPs and the 65,620 SNPs used in a 65 K maize SNP chip that has been widely

employed for genomic breeding in maize. The genotypes of the 42,840 F1 hybrids were

inferred by combining the maternal and paternal alleles derived from the 1428 and 30

lines, respectively. The three phenotypic traits, namely the days to tasseling (DTT),

plant height (PH), and ear weight (EW), of the 1458 maternal lines and the 8652 F1 hy-

brids were measured in five locations. Details of collecting phenotypes were described

in Xiao et al. [26]. To reduce the influence of the environment, the best linear unbiased

prediction (BLUP) value of each F1 hybrid and each parental line was computed for the

phenotypic data in the five locations over 2 years, using the mixed linear model in the
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R package “lme4.” The BLUP values for each phenotype were then used for the subse-

quent analysis.

Procedure to build the ML system for GS prediction

The procedure of constructing an ML system for a specific task involves multiple steps

to ensure an objective assessment of the system. For model selection, five basal

methods, including SVR, ANN, KNN, RF, and GB, were compared with rrBLUP in par-

allel. For the feature selection, 32,559 SNPs were selected from the original set of 4.5

million SNPs based on professional knowledge in maize population genetics. For the

model evaluation, we designed multiple predictive frameworks and different ratios of

training and testing samples to test the model precision and model stability. When en-

semble learning is determined as the optimal approach, three more variants of the GB

method, namely XGBoost, CatBoost, and LightGBM algorithms, were tested in parallel

with rrBLUP. To further optimize the LightGBM model, additional functions, including

feature format conversion, hyperparameter grid search, classification prediction, and

GPU acceleration, were implemented. The feature importance analysis was based on

computing a score of the information gain to represent the predictive effectiveness for

each SNP. To interpret the underlying mechanism of LightGBM in G2P prediction, the

384 highly effective SNPs recognized by LightGBM were compared with the trait-

associated QTLs identified by the GWAS analysis to prove their regulatory association

with gene expression and phenotype variations. Finally, a parallel benchmark testing

was performed on the same server to test the computing performance of CropGBM

and rrBLUP. The server was equipped with a Xeon E5-2665 CPU clocked at 2.40 GHz

(8 cores × 2), 128 GB of memory, and an NVIDIA GeForce GTX-P8 GPU (1080 × 4)

Evaluation of model precision

We used different CV methods to evaluate the model precision based on different pre-

dictive goals and partitions of the training and testing samples. Significance level (p

value) of statistical test for the comparison of rrBLUP and LightGBM used in the corre-

sponding figures is presented in Additional file 1: Table S5.

1) To evaluate the five basal ML models using the 6210 (207 maternal × 30 paternal

lines) F1s (Fig. 1c), 29 F1 populations were used as the training samples to predict

the rest of the F1 population. This procedure was repeated 30 times to test the

precision across all the 30 F1 populations, so that a distribution of the precision (r,

Pearson’s correlation between the predicted and measured phenotypes) can be

generated for each model.

2) To evaluate the influence of the sampling rate of training data on prediction

precision, four scenarios were designed using the population of 6210 F1s, namely

fixed size of testing set (621 samples), fixed size of training set (621 samples), fixed

ratio of 9:1 (training vs. testing), and fixed ratio of 1:9 (training vs. testing) (Fig. 4).

For the first two scenarios, 9 ratios (9:1, 7:1, 5:1, 3:1, 1:1, 1:3, 1:5, 1:7, and 1:9) of

training and testing were set, and then the training and testing sets were randomly

built for 30 times at each ratio to generate a precision distribution for LightGBM

and rrBLUP. For the last two scenarios, 9 population sizes with fixed ratio of 9:1
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and 1:9 were set, and then the training and testing sets were randomly built for 30

times at each size.

3) To evaluate the influence of parental compositions on the prediction (Fig. 2b), the

6210 F1s were partitioned into 30 subgroups, 25 of which were used as training

samples to predict the F1s in the rest of the 5 subgroups. This procedure was

repeated 30 times to generate a distribution of the precision.

4) To evaluate the precision between different F1 populations (Fig. 2c), the 1428

Zheng58 F1s were first used as training samples to predict the 1428 Jing724 F1s;

then, the 1428 Jing724 F1s were first used as training samples to predict the 1428

Zheng58 F1s.

5) To evaluate the model fitting ability on different GB variants (Fig. 3a), the 8652 F1s

with measured phenotypes were used to first train the models and then generate

the predicted phenotypes for the 8652 F1s. Subsequently, Pearson’s correlations

between the predicted and measured phenotypes for the 8652 F1s were computed

to represent the fitting ability of each model.

6) To compare the precision between LightGBM and rrBLUP with and without

parental phenotypes as additional features (Fig. 3c), 6210 F1s + 1221 Zheng58 F1s

were first used as training samples to predict the 1221 Jing724 F1s; then, 6210 F1s

+ Jing724 F1s were first used as training samples to predict the 1221 Zheng58 F1s.

7) To test the classification task performed by LightGBM (Fig. 5), the 1428 maternal

lines were labeled with early, moderate, and late DTT (GCA of EW), and fivefold

CVs were performed to train the model, followed by generating the ROC curve

and an AUC value to represent the precision. To test the classification task by

rrBLUP (Additional file 1: Fig. S6), the 1428 maternal lines were first labeled with

early, moderate, and late DTT (GCA of EW) according to observed phenotypes.

After rrBLUP prediction, the lines were relabeled according to the values of

predicted phenotypes, followed by generating the ROC curve and an AUC value to

represent the precision.

8) To evaluate the effectiveness of feature selection by LightGBM (Fig. 6a), sampling

of 80% of the 1428 maternal lines were repeated for 30 times, and IGs were

computed at each time of repeat to select highly effective SNPs to retrain

LightGBM, followed by predicting phenotypes of the rest 20% lines. Detailed

procedure was described in the section below.

Feature importance analysis with information gain (IG)

Entropy is a mathematical indicator reflecting the degree of dispersion of a group of

samples. A low entropy value indicates a low degree of sample dispersion. As the deci-

sion tree takes the average value of the phenotypes in the leaf nodes as the predicted

value, the lower the entropy in the leaf node of the training samples, the higher the pre-

cision of the predicted value. In the feature importance analysis by LightGBM, the in-

formation gain (IG) value is used to represent the change in the entropy before and

after separating the samples, which may reflect the effectiveness of a tree node (SNP) in

terms of discriminating two branches of samples that exhibit a strong phenotypic dif-

ference. Therefore, the SNPs with high IGs indicate a high power in classifying samples.

After completing all the iterations of tree building during model training, the IG values
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for each SNP are summed to represent its feature importance that may reflect its power

on association between the genotype and phenotype. To exclude the influence of SNP

effects from testing samples, the IGs were first computed by LightGBM in each time of

sampling of 80% lines as training set, and the top 12, 24, 48, 96, 192, 384, 1000, 2000,

3000, and 4000 SNPs were selected, which were based on ranking the summed IGs

from high to low, as features to retrain LightGBM. The model was then used to predict

phenotypes of the rest 20% lines. The sampling was repeated for 30 times to generate

30 Pearson correlations used to plot precision distribution for each set of SNPs. Mean-

while, the same procedure was applied on the same number of SNPs randomly sampled

from the 32,559 SNPs to plot precision distribution as the contrast. At last, rrBLUP

was performed on the 1428 maternal lines using 32,559 SNPs to compute baseline pre-

cisions for the three traits.

Conversion of genotypic characters to numeric features

For both rrBLUP and machine learning tools, the genotypic characters should be first

converted to numeric features based on the allele frequency of each SNP in the training

and testing populations. When using the 0, 1, 2 coding scheme, the homozygous geno-

type (AA) of the two major alleles is coded as 0, heterozygous genotype (AB) of one

major and one minor allele is coded as 1, and the homozygous genotype (BB) of the

two minor alleles is coded as 2. In addition to the 0, 1, 2 coding scheme, LightGBM

may employ an alternative 0–9 coding scheme to represent all the forms of genotypes,

such as the converting rule used in CropGBM, as follows: AA (0), AT (1), TA (1), AC

(2), CA (2), AG (3), GA (3), TT (4), TC (5), CT (5), TG (6), GT (6), CC (7), CG (8), GC

(8), GG (9).

Calculation of general combining ability (GCA)

The general combining ability (GCA) is the average value of the inbred line based on

its behavior in crosses with other lines. It is calculated as follows:

GCAi ¼ Xi−X

where GCAi represents the GCA of parent i, Xi is the average value of the i parental

hybrid offspring, and X is the population mean of all hybrid offspring.

Versions of tools and packages

Machine learning tools in Python sklearn package (version, https://scikit-learn.org/

stable/);

Support vector regression (SVR, SVR);

Random forests (RF, RandomForestRegressor);

Artificial neural network (MLP, MLPRegressor);

K-nearest neighbor (KNN, KNeighborsRegressor);

Gradient boosting regression tree (GB, GradientBoostingRegressor);

PCA analysis (decomposition);

t-SNE analysis (manifold);

OPTICS analysis (cluster);

eXtremeGB (XGB, XGBoostRegressor);
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Categorical GB (CatGB, CatBoostRegressor);

BLUP (R package ‘lme4’);

LightGBM (version 2.2.4, https:// lightgbm.readthedocs.io/);

Genomic selection analysis: rrBLUP (version 4.6, https://cran.r-project.org/src/

contrib/Archive/rrBLUP/rrBLUP_4.6.tar.gz);

GWAS analysis: GEMMA (version 0.97, https://github.com/genetics-statistics/

GEMMA/tree/gemma-0.97-preview);

Manhattan plot: CMplot (https://cran.r-project.org/web/packages/CMplot/index.

html)

Metabolic pathway: CornCyc (https://corncyc-b73-v4.maizegdb.org)

PLINK (version 1.90, https://www.cog-genomics.org/plink/)

Evolution analysis: MEGA (version 7.0, https://www.megasoftware.net/)

Cladogram: EvolView (https://www.evolgenius.info/evolview/)

Other scripts for CropGBM (https://github.com/YuetongXU/Cropgbm-Paper)
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