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SUMMARY

Advances in high-throughput omics technologies are leading plant biology research into the era of big data.

Machine learning (ML) performs an important role in plant systems biology because of its excellent perfor-

mance and wide application in the analysis of big data. However, to achieve ideal performance, supervised

ML algorithms require large numbers of labeled samples as training data. In some cases, it is impossible or

prohibitively expensive to obtain enough labeled training data; here, the paradigms of unsupervised learn-

ing (UL) and semi-supervised learning (SSL) play an indispensable role. In this review, we first introduce the

basic concepts of ML techniques, as well as some representative UL and SSL algorithms, including cluster-

ing, dimensionality reduction, self-supervised learning (self-SL), positive-unlabeled (PU) learning and trans-

fer learning. We then review recent advances and applications of UL and SSL paradigms in both plant

systems biology and plant phenotyping research. Finally, we discuss the limitations and highlight the signif-

icance and challenges of UL and SSL strategies in plant systems biology.

Keywords: deep learning, machine learning, plant systems biology, semi-supervised learning, unsupervised

learning.

Box 1. Summary

• Machine learning technology is a powerful tool with excellent performance and wide applicability in plant systems biology.

• Machine learning can be divided into supervised, unsupervised and semi-supervised paradigms, depending on whether

the training data needs to be labeled or not.

• The unsupervised and semi-supervised learning paradigms play an indispensable role in plant systems biology when

labeled data are scarce or expensive.

• Plant systems biology is benefitting from the use of unsupervised and semi-supervised learning strategies, such as

clustering, dimensionality reduction, self-supervised learning and transfer learning.

Box 2. Open questions

• Are there further potential applications of unsupervised and semi-supervised learning techniques in plant systems biology?

• Can unsupervised learning algorithms be used effectively to reduce redundancy and integrate complex multi-omics

and multimodal data in plants?

• Will semi-supervised learning strategies (e.g. positive-unlabeled learning) effectively help to discover causative genes

associated with important plant traits?

• Can other advanced ML strategies (e.g. contrastive learning and reinforcement learning) be applied in plant systems biology?
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INTRODUCTION

In the past decade, advances in high-throughput phenotyp-

ing, next-generation sequencing and mass spectrometry

technologies have greatly empowered plant systems biol-

ogy (Yuan et al., 2008). Rapid accumulation of plant omics

data at multiple levels (i.e. multi-omics data), such as gen-

ome, metabolome, phenome, proteome and transcrip-

tome, helps us to more comprehensively and

systematically analyze complex biological changes and

regulatory processes, and discover crucial genes and regu-

latory elements to accelerate plant breeding and improve-

ment (Yang et al., 2021). Multi-omics data contain a wealth

of information on plant physiology and developmental reg-

ulation. However, in-depth exploration and integration of

this knowledge is not easy because multi-omics data are

often characterized by high dimensionality, redundancy

and noise, and may have different sources, follow different

statistical distributions, and contain different degrees of

inaccuracy and uncertainty (Li et al., 2018).

Machine learning (ML) provides a way to interpret multi-

omics data in plants. As its name implies, ML describes

the process in which computers have the capability to

autonomously learn and master complex patterns in large-

scale data sets, and then make decisions or predictions

about real-world events (Greener et al., 2022). ML has

achieved success in both academia and industry in recent

decades (Xu & Jackson, 2019). In plants, ML has been

widely used for data dimensionality reduction (DR) and

visualization, feature extraction and integration, gene regu-

latory network construction, genotype-to-phenotype (G2P)

prediction and plant phenotyping (Ma et al., 2014; Tong &

Nikoloski, 2021; Yang et al., 2020). ML algorithms are com-

monly classified into supervised learning (SL), unsuper-

vised learning (UL) and semi-supervised learning (SSL),

with the main difference being whether the training sam-

ples are labeled or not. SL uses a labeled training data set

for model training and makes predictions for an unlabeled

test data set, whereas UL uses an unlabeled data set to

both train a model and find relationships within the data.

Classification and regression are two branches of SL,

whereas clustering and DR are two categories of UL (Pete-

grosso et al., 2020). In SSL, labels are known for only part

of the training samples, and models make predictions or

decisions on the test data by learning from both labeled

and unlabeled samples in the training data, as exemplified

by positive-unlabeled (PU) learning (Li et al., 2022).

Deep learning (DL) is a leading class of ML methods that

has emerged in recent years with the proliferation of

affordable computing power. The motivation of DL is to

establish a neural network simulating human brain mecha-

nisms for learning and interpreting data (Eraslan

et al., 2019). DL combines low-level features to create

more abstract, high-level attributes or features for

discovering intricate structure in the data; this effectively

solves many complex pattern-recognition problems associ-

ated with unstructured data, such as text, images, and

sound, greatly advancing artificial intelligence (AI)-related

technologies (Webb, 2018). Analogous to traditional ML

algorithms, DL methods can also be supervised, unsuper-

vised or semi-supervised. In recent years, supervised DL

algorithms, such as CNNs (convolutional neural networks),

RNNs (recurrent neural networks), and their variants, have

proliferated in various fields (Liu et al., 2020). Meanwhile,

other DL approaches, such as self-SL, transfer learning and

reinforcement learning, are emerging and gaining exten-

sive attention (Esteva et al., 2019).

Unsupervised and semi-supervised approaches are

indispensable under certain circumstances, however. For

example, feature extraction and integration of large-scale

unlabeled multi-omics data and DR and clustering of

single-cell-level omics data rely on UL algorithms (Pete-

grosso et al., 2020). In cases where well-labeled training

data are difficult or costly to obtain, SSL or self-supervised

strategies can be introduced (van Dijk et al., 2021). More-

over, large-scale omics data sets have been generated and

annotated for only a very limited number of model plants,

such as Arabidopsis, Oryza sativa (rice) and Zea mays

(maize), and it is impractical to produce well-annotated

training data for all non-model plant species. One possible

solution is the adoption of transfer learning to achieve

cross-species prediction by considering conserved gene

functions and pathways between evolutionarily related

species (Cheng et al., 2021). With UL and SSL approaches

playing an increasingly important role in plant research, a

systematic survey of their basic concepts and application

in plant research is necessary. Supervised ML and DL

approaches have been widely applied in multiple fields of

plant biology, and have been systematically reviewed in

multiple articles (Azodi et al., 2020; Mahood et al., 2020;

Silva et al., 2019; van Dijk et al., 2021). However, to our

knowledge, reviews on this topic are rarely seen in plant

research. Thus, our review mainly focuses on advanced

algorithms for UL and SSL paradigms and their recent

applications in plant systems biology, which are designed

to compensate for the inability to perform SL because of

the insufficient availability of labeled data.

BASIC CONCEPTS AND ALGORITHMS OF UL AND SSL

Algorithms for data clustering

The UL and SSL paradigms cover a wide range of

advanced ML and DL algorithms (Figure 1; Table S1). Clus-

tering is a major branch of the UL paradigm and refers to

grouping similar objects together and separating dissimilar

objects into different categories. Various distance metrics

have been introduced for similarity measurement and

most of these are common for different clustering
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algorithms (Berthold & H€oppner, 2016; Irani et al., 2016).

For example, Euclidean distance is the most common dis-

tance metric, which can be simply described as the geo-

metric distance between objects in a multidimensional

space; cosine distance is another common distance metric

that calculates the cosine of the angle between two vectors

in the vector space; the Pearson correlation coefficient opti-

mizes the Euclidean distance by centralizing the value of

the vector, and then calculating the cosine distance of the

centralization result; the Jaccard similarity coefficient and

the Jaccard distance measures the similarity and difference

of two sets, respectively, and are also used as distance

metrics in clustering.

Clustering algorithms can be further divided into

partition-, hierarchy-, density-, graph-, grid- and model-

based algorithms. One of the most popular clustering algo-

rithms applied widely across various research areas is K-

means, a partition-based clustering algorithm. K-means is

easy to implement and understand, but the number of

clusters must be specified and it cannot solve irregularly

shaped clusters (Demidenko, 2018). Hierarchy-based clus-

tering is a popular alternative in which the number of clus-

ters need not be specified. This can be implemented in two

ways: ‘divisive hierarchical clustering’, which starts by

grouping all samples into one class and then gradually

dividing them into smaller units; and ‘agglomerative hier-

archical clustering’, which executes the clustering process

in the opposite manner (Lorbeer et al., 2018).

Density-based clustering can identify clusters of arbitrary

shape and handle noisy data better than partition- or

Figure 1. Classification of unsupervised learning (UL) and semi-supervised learning (SSL) paradigms. (a) Schematic of four typical machine learning strategies.

White circles represent unlabeled data points, colored points represent labeled data points of different classes, striped circles represent unlabeled data points

that are labeled during the model training process and black lines represent decision boundaries between classes. The SSL example diagram shows positive-

unlabeled (PU) learning, with only a small number of labeled positive samples (green points) and a large number of unlabeled samples. (b) Schematic of the

transfer learning strategy, which uses knowledge from a pre-training task to assist with a new task. (c) Classification of representative unsupervised and semi-

supervised machine learning algorithms. Definitions for the abbreviations used in this figure can be found in Table S1.
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hierarchy-based clustering. DBSCAN (density-based spatial

clustering of applications with noise), OPTICS (ordering points

to identify the clustering structure) and MEAN-SHIFT are repre-

sentatives of this type of clustering algorithm. In DBSCAN, the

maximum radius of a region and the minimum number of

objects that should be accommodated in the region are first

defined. Clustering then continues as long as the density

(number of data points) of neighboring regions exceeds a

certain threshold. Finally, objects in the same region are

defined as a cluster. As DBSCAN uses fixed parameters to

identify clusters, the results are highly parameter depen-

dent (Schubert et al., 2017). OPTICS effectively reduces the

parameter dependence of DBSCAN by searching for high-

density areas and automatically adjusting parameter set-

tings (Qu et al., 2018). MEAN-SHIFT is a density-based algo-

rithm that has been applied to image segmentation (Wang

& Xu, 2018). It employs the idea of moving sample points in

the direction of local density increases, and points converg-

ing at the same local maximum value are assigned to the

same category (Carreira-Perpin�an, 2015).

Spectral clustering and affinity propagation (AP) are

examples of graph-based clustering algorithms. Spectral

clustering regards samples as vertices and the similarity

between samples as weighted edges (Park & Zhao, 2018),

whereas AP regards all objects as nodes of a network and

calculates the cluster center potential of each object

through message passing along each edge in the network.

AP is more robust and accurate than K-means but has

higher computational complexity and is not suitable for

large sample sizes (Bodenhofer et al., 2011). Conversely,

grid-based clustering algorithms (Rani, 2017) have higher

efficiency and lower time complexity, making them suitable

for processing a large volume of samples, but at the

expense of accuracy. Model-based methods mainly refer to

algorithms based on probability models and neural net-

work models. The former group is represented by the Gaus-

sian mixture model (GMM) (Viroli & McLachlan, 2019),

whereas the latter group is represented by SOM (self-

organizing map) (Quintelier et al., 2021). Although these

algorithms may achieve better clustering results than other

approaches, they come with the disadvantages of high

computational complexity and low execution efficiency.

Algorithms for data dimensionality reduction

Dimensionality reduction (DR) is another major branch of

the UL paradigm. Its essence is to use a defined method to

project data points from the original high-dimensional

space to another low-dimensional space. Multi-omics data

are high dimensional. Taking a maize population contain-

ing 500 inbred lines as an example, the dimensionality of

the gene expression data generated by transcriptome

sequencing is about 20 000 expressed genes multiplied by

500 lines. The genotype data generated by whole-genome

resequencing is about 5 million single-nucleotide

polymorphisms (SNPs), multiplied by 500 lines. If sequenc-

ing at the single-cell scale, the dimensionality shall be fur-

ther multiplied by the cell count, ranging from thousands

to tens of thousands. As there is usually extensive redun-

dancy and noise in multi-omics data, DR can extract effec-

tive information, discard useless redundancy and visualize

the data (Xiang et al., 2021). DR algorithms are mainly clas-

sified into two categories: linear projection and non-linear

projection. Linear methods are representeds by the com-

monly used principal component analysis (PCA), indepen-

dent component analysis (ICA) and multidimensional

scaling (MDS) approaches (Anowar et al., 2021). Non-

linear methods largely include kernel-based methods, man-

ifold learning, neural network-based methods and other

methods (Gisbrecht & Hammer, 2015). Here, we highlight

several representative non-linear algorithms, considering

their potential in dealing with complex multi-omics data.

The basic principle of kernel-based non-linear DR algo-

rithms is to project the original data into a high-

dimensional space through kernel functions and then use

traditional linear DR algorithms to reduce the dimensional-

ity of the data. These algorithms are represented by Kernel

PCA (KPCA) and Kernel ICA (KICA) (Pilario et al., 2019).

Manifold learning is another main branch of non-linear DR

algorithms, which aims to find low-dimensional manifolds

in high-dimensional spaces and identify the corresponding

embedding projections to achieve DR or data visualization

(Moon et al., 2018). Representative manifold learning algo-

rithms include ISOMAP (isometric feature mapping), LLE (lo-

cally linear embedding) and T-SNE (t-distributed stochastic

neighbor embedding). ISOMAP is based on the MDS theoreti-

cal framework but changes the Euclidean distance in the

high-dimensional space to geodesic distance, the shortest

distance between two points on the manifold (Ghojogh

et al., 2020b). LLE, as its name suggests, builds a local linear

model between neighboring points in a high-dimensional

space and then projects data to a low-dimensional space

(Ghojogh et al., 2020a). T-SNE converts Euclidean distance

into conditional probability to express the similarity

between data points in high-dimensional space and is

mainly used for data visualization (Kobak & Berens, 2019).

In a neural network model, high-dimensional input data

are transformed into low-dimensional data through a smal-

ler hidden layer. Therefore, neural network-based algo-

rithms also provide an effective DR approach. AUTOENCODER

is a type of neural network that learns the same objective

as the input. It consists of two parts: an encoder and a

decoder. The encoder compresses the input into a latent

space representation, and the decoder then reconstructs

this representation into the output (Tschannen et al., 2018).

As AUTOENCODER neural networks can encode and decode in

a single model, they have been used not only for DR but

also for data denoising, image generation and feature

extraction (Amodio et al., 2019).
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Other DR algorithms, such as NMF (non-negative matrix

factorization), MDR (multifactor dimensionality reduction)

and LDA (latent Dirichlet allocation), are also widely used in

plant research. The principle behind NMF is that for any

given non-negative matrix A(m 9 n), two lower dimensional

non-negative matrices U(m 9 k) and V(k 9 n) can be found

with k ≤ min(m, n), so A(m 9 n) can be decomposed into

the product of U(m 9 k) and V(k 9 n) (Lin & Boutros, 2020).

NMF is mainly used for clustering and feature selection of

gene expression data (Ma et al., 2022). MDR uses multiple

factors in combination to project high-dimensional data to

low-dimensional spaces (Gola et al., 2016). MDR is mainly

used for studying gene–gene or gene–environment interac-

tions (Xu et al., 2018). LDA is a generative probabilistic

model originally used for document mining, and considers

a document to be a collection of unordered words. A docu-

ment contains multiple topics, and each word corresponds

to one of the topics, and then the dimensionality of the

document can be reduced from a large number of words

to a probability distribution of several topics. LDA has been

extended to other data and applied in plant phenotyping

for image segmentation (Wang & Xu, 2018).

The self-SL paradigm

Self-SL is a special UL paradigm that has emerged in the

DL field in recent years. It does not rely on manually

labeled data but learns supervised information from large-

scale unsupervised data by constructing a ‘pre-text task’,

that is, by first training an auxiliary task with unlabeled

data to learn representations, and then applying the repre-

sentations to the actual task (Schmarje et al., 2021). Self-

SL is exemplified by AUTOENCODER, generative learning and

contrastive learning. GAN (generative adversarial network)

is a representative generative learning algorithm inspired

mainly by zero-sum game theory. When applied to the DL

category, the model is composed of two networks, namely

the generator network G and the discriminator network D.

The goal of G is to generate real data to deceive D,

whereas the goal of D is to distinguish the fake data gener-

ated by G from the real data. Through this continuous

game, G learns the distribution of the data. When used for

data generation, after model training is completed, G can

generate realistic data from a random number. Unlike tra-

ditional DL models, GANs comprise two different networks

instead of a single network, and the gradient update infor-

mation for G comes from the discriminator D, not from the

data (Creswell et al., 2018). Compared with other algo-

rithms, GAN models generate more realistic samples,

prompting their wide use in the areas of data denoising,

image inpainting and training data augmentation (Saxena

& Cao, 2021).

Unlike generative learning, contrastive learning aims to

develop an encoder that clusters similar data while making

the encoding results of different kinds of data as different

as possible (Chen et al., 2020). Using this approach, a DL

model can be trained to distinguish between similar and

different images. Contrastive learning does not need to

pay attention to the tedious details of an instance, it only

needs to learn to distinguish the data in the feature space

at the abstract semantic level; the model and its optimiza-

tion therefore become simpler, and the generalization abil-

ity is stronger. Contrastive learning has been successfully

applied in computer vision for image classification, object

detection and behavior recognition (Jaiswal et al., 2020).

PU learning

Traditional supervised binary classifiers rely on both posi-

tive and negative samples, but they are unable to be

directly applied when the positive samples are limited and

unlabeled data accounts for the majority of the data. PU

learning, a type of SSL paradigm, is designed to solve such

a problem. There are two commonly used strategies in PU

learning. The first strategy is termed ‘selecting reliable

negatives’, in which putative negative samples are first

identified from unlabeled data followed by training the

classifier using true positive samples and putative negative

samples. The second strategy is termed ‘adapting the base

classifier’, where all unlabeled samples are initially treated

as negative samples to first train a base classifier, and then

‘bagging’ or Bayesian approaches are applied to obtain the

classification probability of each unlabeled sample (Li

et al., 2022). In PU learning, the base classifiers are com-

monly used supervised ML algorithms, such as weighted

SVM (support vector machine), for the mining of function-

ally related genes (Shen et al., 2020), RF (random forest),

for the identification of disease-associated circular RNAs

(Zeng et al., 2020), ANN (artificial neural network), for the

prioritization of pathogenic variants (Pejaver et al., 2020),

and the ensemble method of multi-class classification,

for the prioritization of genome-wide association study

(GWAS) candidate genes (Kolosov et al., 2021).

Transfer learning

Transfer learning refers to the application of knowledge or

patterns learned in a certain domain to other related

domains, thereby accelerating or improving the learning

effect of the target domains (Zhuang et al., 2020). Transfer

learning can be divided into four categories: (i) instance-

based transfer, where instances or samples from the

source domain that are distributed close to the target

domain are selected for building a new model in the target

domain; (ii) feature-based transfer, in which common fea-

tures between source and target domains are identified

and used for model training in the target domain; (iii)

model-based transfer, which utilizes pre-trained models in

the source domain along with new training data to fine-

tune parameters in the target domain; and (iv) relation-

based transfer, in which the relationship between concepts
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is learned in the source domain and then analogized to the

target domain to complete the transfer of knowledge (Niu

et al., 2020). Transfer learning provides an effective solu-

tion to the large volume of high-quality labeled data and

considerable computing resources required for training a

large ML/DL model, and has thus been successfully applied

to cross-species prediction and plant phenotyping (Moore

et al., 2020; Nabwire et al., 2021). In theory, transfer learn-

ing can be performed between any two domains. However,

insufficient similarity between the source domain and the

target domain will result in less than ideal transfer results,

creating a so-called negative transfer situation (Zhuang

et al., 2020). Identifying source and target domains with

the highest possible similarity is the most important pre-

mise of transfer learning.

APPLICATIONS OF UL AND SSL IN PLANT SYSTEMS

BIOLOGY

In plant systems biology, UL and SSL algorithms have

been applied in the fields of data clustering, DR and

visualization, gene regulatory network (GRN) inference,

cross-species prediction and single-cell omics data analysis

(Figure 2; Table S2). Visualization of high-dimensional

omics data and clustering of samples or molecular mod-

ules are the most common requirements in plant genetic

and genomic research and require effective DR and cluster-

ing approaches (Rai et al., 2019). PCA is one of the most

popular methods for DR and visualization of genotypic and

multi-omics data (de Abreu e Lima et al., 2018, Yan

et al., 2020), whereas hierarchical clustering has been

widely used for clustering genes with similar expression

patterns in transcriptomic and proteomic research (Klepi-

kova et al., 2016; Xu et al., 2012). Other clustering and DR

algorithms have also been employed in plant systems biol-

ogy. For example, the T-SNE and OPTICS algorithms have

been used for analyzing the genotypic data of a large-scale

maize hybrid population to better visualize its population

structure (Yan et al., 2021). DBSCAN has been combined with

PCA to compress the genotypic data of a maize inbred

population to assist a downstream association study (Liu

Figure 2. Application of unsupervised learning (UL) and semi-supervised learning (SSL) paradigms in plant systems biology. Representative algorithms and

tools in each area are listed. Definitions for the abbreviations used in this figure can be found in Table S2. (a) A pseudo-genotype index of a maize germplasm

population generated with DBSCAN (Liu et al., 2022). (b) Population structure visualization of a hybrid maize data set using T-SNE (Yan et al., 2021). (c) A merged

network of transcription factor abundance, phosphosite and kinase signaling in Arabidopsis (Clark et al., 2021). (d) Using evolutionarily conserved nitrogen-

responsive genes across Arabidopsis and maize to enhance the power of genotype-to-phenotype (G2P) prediction for nitrogen use efficiency traits (Cheng

et al., 2021). (e) UMAP embedding of a single-nuclei chromatin accessibility data set in maize (Marand et al., 2021). (f) Hyperspectral imaging in crop phenotyping

(Yang et al., 2020).
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et al., 2022). The NMF algorithm has been used for decom-

posing expression matrices comprising thousands of

genes into a small number of metagenes in Arabidopsis

and maize, facilitating the exploration of downstream gene

function (Ma et al., 2022; Wilson et al., 2012). Meanwhile,

the MDR algorithm has been adopted for identifying

multiple pairwise epistatic effects and gene–environment

interactions underlying agronomic and quality traits in rice

and Hordeum vulgare (barley) (Xu et al., 2015; Xu

et al., 2018).

In addition to conventional UL approaches, tree-based

ensemble learning algorithms, such as RF and gradient

boosting, can also be used in an unsupervised manner

for expression data-based GRN inference (Ko & Bran-

dizzi, 2020), as they can evaluate the importance of each

input feature, i.e. rank the contribution of the feature to the

predicted result. The expression data of transcription fac-

tors is used to construct a feature matrix to predict the

expression level of each gene. Genes for which expression

levels can be predicted well are likely to be target genes of

transcription factors, whereas transcription factors with

high feature importance might have a regulatory relation-

ship with target genes. Thus, transcriptome-level GRNs

can be constructed through this process (Ruyssinck et al.,

2014). As known gene regulatory relationships are not pro-

vided for model construction and training, this is essen-

tially an unsupervised approach (Maetschke et al., 2014).

GENIE3 (gene network inference with ensemble of trees)

is an example of such a framework, based on the RF algo-

rithm and with excellent scalability (Huynh-Thu &

Geurts, 2019), and has been widely used for expression

data-based GRN inference in plants such as maize and

wheat (Harrington et al., 2020; Zhou et al., 2020). Recently,

the application of GENIE3 has also been expanded to the

construction of multi-omics-level GRNs with transcrip-

tomic, proteomic and epigenomic data in Arabidopsis

(Clark et al., 2021).

In plants, a lack of annotated genes and pathways has

become a bottleneck for large-scale omics research. Semi-

supervised and transfer learning strategies that consider

the conservation of genes and pathways among evolution-

arily related species have become an effective approach

for prediction tasks. In a recent study on exploiting func-

tionally relevant genes, a feature set was constructed to

include protein–protein interactions (PPIs) of orthologous

genes between species, knowledge extracted from biologi-

cal literature, the conserved gene co-expression network,

shared functional annotations and transcription factor

binding sites of orthologous genes to synthetically train

different models. The results showed that the SSL method

of PU learning significantly outperformed other algorithms

in the experimentally validated Arabidopsis benchmark

data set (Shen et al., 2020). Another example is the use of

a transfer learning strategy to predict specialized/general

metabolism-related genes in Solanum lycopersicum

(tomato) (Moore et al., 2020). In this study, multiple fea-

tures, including evolutionary, structural and expression

properties, were calculated for both Arabidopsis and

tomato genes; the RF and SVM algorithms were then applied

to different prediction tasks. Well-annotated Arabidopsis

genes performed better as training data than known

tomato genes. Similarly, in another so-called ‘evolutionar-

ily informed machine learning’ framework, an XGBOOST

model was trained using transcriptomic data and nitrogen-

use efficiency (NUE) as a trait in Arabidopsis to predict

NUE and related genes in maize (Cheng et al., 2021).

Although this field is in a very preliminary stage, these

studies have opened the door for transferring biological

knowledge obtained from model plants to non-model spe-

cies using ML strategies.

With the advancement of single-cell sequencing technol-

ogy in recent years, data possessing higher dimensionality

and complexity are challenging data analysis methods (Wu

& Zhang, 2020). Various advanced algorithms and tools

have been proposed to cope with these problems. For

instance, T-SNE (Zhou & Jin, 2020), UMAP (uniform manifold

approximation and projection) (Becht et al., 2019), MAGIC

(Markov affinity-based graph imputation of cells) (Van Dijk

et al., 2018) and PHATE (potential of heat-diffusion for

affinity-based transition embedding) (Moon et al., 2019)

have been implemented for understanding the structure of

heterogeneous cell populations; SAUCIE (sparse autoencoder

for unsupervised clustering, imputation and embedding)

takes advantage of a multi-task autoencoder neural net-

work model to simultaneously perform clustering, batch

correction, visualization and denoising tasks for small con-

ditional RNA (scRNA)-seq data (Amodio et al., 2019); and

BEELINE provides a comprehensive framework integrating 12

state-of-the-art algorithms for GRN inference based on

single-cell expression data (Pratapa et al., 2020). Although

most of these methods were first proposed in human stud-

ies, they are also common in plant research; for example,

T-SNE and UMAP have been widely employed for single-cell

data visualization in plants (Marand et al., 2021).

APPLICATIONS OF UL AND SSL IN PLANT IMAGE

ANALYSIS

Another important application of UL/SSL methods is in the

field of plant phenotyping for image analysis. There are

typically four steps in plant phenotyping: image prepro-

cessing, segmentation, feature extraction and classification

(Mochida et al., 2019). Image preprocessing enhances the

target region through a series of approaches such as

image cropping, contrast enhancement, denoising and DR

to facilitate subsequent image analysis (Perez-Sanz

et al., 2017). Segmentation is a crucial step that separates

the target object or region from the rest of the image, i.e.

background or noise artifacts (Singh & Misra, 2017).
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Feature extraction transforms plant image data into ‘fea-

ture vectors’ through various algorithms to systematically

describe the characteristics of the target object and

enhance the predictability of the following ML-based clas-

sification. Classification refers to the establishment of

models to predict the target phenotypes from image data.

ML and DL techniques permeate each step of plant pheno-

typing, with supervised DL algorithms having gained

increasing popularity because they can integrate feature-

extraction and decision-making steps into one framework.

For example, the CNN algorithm, and its variants such as RC-

NN (REGION CNN) (Wang & Xu, 2018), FAST RCNN (Girshick,

2015), FASTER RCNN (Ren et al., 2015) and MASK RCNN (He

et al., 2017), have been successfully applied to segmenta-

tion, feature extraction and classification tasks in plant

phenotyping (Singh et al., 2018). However, unsupervised

and semi-supervised strategies are also essential in plant

phenotyping, especially when there is not enough labeled

training data or a need for feature extraction without deci-

sion making.

Indeed, PCA has also been employed in plant phenotyp-

ing for image preprocessing and feature extraction (Singh

et al., 2016). For example, an unsupervised Bayesian Gaus-

sian process latent variable model (92.08% mean classifica-

tion accuracy for Daucus carota and 94.31% for Beta

vulgaris) and a convolutional autoencoder model (92.38%

mean classification accuracy for D. carota and 93.28% for

B. vulgaris) were used to extract biologically relevant fea-

tures from plant leaf images followed by support vector

machine (SVM) classification (Wober et al., 2021). K-means

have been used to segment image kernels from the back-

ground based on PCA-processed image data (Hu &

Zhang, 2021). For example, an unsupervised Bayesian

learning approach has also been used for rice panicle seg-

mentation, with an average recall, precision and F1 score

of 96.49%, 72.31% and 82.10%, respectively (Hayat

et al., 2020); the LDA-based segmentation algorithm ULCRF

(unsupervised learning conditional random field) achieved

an accuracy ranging from 82.41% to 99.98% for tomato

fruit segmentation (Zhang & Xu, 2018), whereas MSBS-LDA

(mean-shift bandwidths searching latent Dirichlet alloca-

tion) achieved a foreground–background dice (FBD) score

ranging between 90.78% and 99.18% on three tomato plant

image data sets (Wang & Xu, 2018).

Specific UL/SSL algorithms are also necessary in some

special scenarios. As building a supervised DL model

requires a large number of labeled images for training

data, relying on laborious and costly manual labeling, a

possible solution is to generate synthetic data through

generative learning algorithms to increase the number of

training samples, thereby reducing the cost and improving

the accuracy of the model (van Dijk et al., 2021). GAN and

its variants are the most widely used methods for synthetic

image generation and have been successfully used for the

segmentation of plant organs and the classification of

plant diseases (Jiang & Li, 2020). ARIGAN (Arabidopsis

rosette image generator through adversarial network)

applies a conditional GAN for generating images of Ara-

bidopsis plants given a condition of the number of leaves

to generate (Valerio Giuffrida et al., 2017). TASSELGAN uses a

deep convolutional GAN (DC-GAN) model to generate syn-

thetic images of maize tassels and sky backgrounds sepa-

rately, then merges these to produce field-based data

(Shete et al., 2020). A study by Barth et al. applied a cycle

GAN approach to generate more realistic synthetic plant

images and improve plant part segmentation (Barth et al.,

2020). However, there is a risk of overfitting when using

synthetic data for model training. Bi and Hu used WGAN-GP

(Wasserstein generative adversarial network with gradient

penalty) with label smoothing regularization (LSR) for plant

disease classification, effectively addressing the overfitting

problem and improving model accuracy by 24% (Bi &

Hu, 2020).

Another problem facing plant phenotyping is the enor-

mous consumption of computational resources when

training large-scale DL models. With the reuse and fine-

tuning of a pre-trained model generated from a large data

set associated with a similar task, transfer learning can

improve the predictability of a smaller experimental data

set, effectively reducing the consumption of computing

resources (Nabwire et al., 2021). Transfer learning strate-

gies have been applied in many DL architectures for

plant phenotyping. Examples include ALEXNET for plant dis-

ease and pest identification (Fuentes et al., 2017), VGG-16

and VGG-19 for crop and weed segmentation (Abdalla

et al., 2019), GOOGLENET for plant disease classification (Bar-

bedo, 2018), YOLO 3 for leaf counting of Arabidopsis (Buzzy

et al., 2020), and INCEPTION-RESNET and DENSENET for weed

identification (Espejo-Garcia et al., 2021). Additionally,

transfer learning was applied in the ARADEEPOPSIS (Arabidop-

sis deep learning-based optimal semantic image segmen-

tation) pipeline by retraining a large ImageNet-based

model for Arabidopsis rosette segmentation (H€uther

et al., 2020). In another study, the authors adopted transfer

learning and self-supervised strategies to extend a pre-

trained ImageNet architecture with a triplet network for

feature extraction and refinement, successfully generating

feature representations from unlabeled time-series image

data in Arabidopsis (Marin Zapata et al., 2021).

LIMITATIONS AND CAUTIONS WHEN APPLYING UL AND

SSL

Compared with SL, UL and SSL approaches require no or

only a small number of labeled samples to train a model

and can be applied to a wider range of data types. How-

ever, with the absence of true labels on training samples,

UL algorithms cannot predict the exact labels, and the pre-

dicted results often require additional manual curation.
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Moreover, in the case of integrating data from different

sources and batches, bias arising from batch effects may

also influence the prediction (Kiselev et al., 2019). Simi-

larly, as SSL uses a limited number of labeled data for

model training, prediction accuracy is not expected to be

as high as that achieved using SL with sufficient labeled

samples (Zhou, 2017). It also must be noted that both SSL

and UL may suffer a high risk of overfitting if the data fea-

tures are not uniformly distributed. The same rule also

applies to transfer learning, which largely depends on the

similarity of source and target domains and is not applica-

ble for tasks with low similarity or for species with high

evolutionary distance (Aromolaran et al., 2021).

Additionally, different algorithms may have their own

innate problems. For example, K-means can only cluster

spherical clusters, and the number of clusters completely

depends on the initial setting of K (Demidenko, 2018). DB-

SCAN requires arbitrarily set thresholds of distance and

neighborhood number, and different parameter combina-

tions have a great impact on the final clustering result

(Schubert et al., 2017). SOM is even more complicated to

apply because the weights of the model are difficult to

determine (Quintelier et al., 2021). PCA may lead to the

loss of valuable information, and the biological signifi-

cance of each principal component is difficult to explain

(Anowar et al., 2021). T-SNE is computationally expensive,

and with poor stability and consistency (Kobak &

Berens, 2019). Therefore, no algorithm is perfect for all the

problems, and we must select the most suitable one

according to the characteristics of the data itself.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

Advanced UL and SSL strategies, such as novel clustering

and DR algorithms, transfer learning and GAN models,

together with other supervised ML and DL approaches,

have permeated multiple areas of plant systems biology.

In this review, we introduced representative unsupervised

and semi-supervised ML algorithms and highlighted their

recent advances in plant systems biology research. The

successful application of UL and SSL has effectively allevi-

ated the problems of high data dimensionality, insufficient

training data and scarcity of labeled data in both plant

genomics and phenomics. However, UL or SSL algorithms

are not panaceas. If accurate sample classification or pre-

diction is required, the SL approaches are still essential. In

addition, the traditional UL and SSL algorithms also face

new challenges when analyzing complex plant multi-omics

data. The joint utilization of multiple algorithms and

the development of new algorithms may be useful. For

example, a multi-omics data association study is computa-

tionally intensive, but by clustering the genotypic data

with DBSCAN and then performing dimensionality reduction

through PCA, the genotypic data including millions of

SNPs can be compressed into tens of thousands of

pseudo-genotypes, so that the genomic regions associated

with target traits can be rapidly located (Liu et al., 2022). In

the integration analysis of single-cell multi-omics data,

data heterogeneity and batch effects pose great challenges

to traditional algorithms. The use of graph-linked unified

embedding (GLUE) introduced the generative learning strat-

egy of the variational graph autoencoder (VGAE) algorithm

to realize the unsupervised integration and regulatory

inference of millions of single-cell multi-omics data, with

high efficiency and accuracy (Cao & Gao, 2022). Still, a

number of promising ML approaches, such as PU-learning

(Li et al., 2022), contrastive learning (Chen et al., 2020) and

reinforcement learning (Eckardt et al., 2021), which have

succeeded in the areas of human genomics, computer

vison and games, respectively, need further exploration in

plant research. There is no doubt that the increasing appli-

cation of advanced algorithms will further promote plant

systems biology research.
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