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 30 

 31 

Abstract 32 

Limited knowledge on genomic diversity and the functional genes associated with 33 

soybean variety traits has resulted in slow breeding progress. We sequenced the 34 

genome of 250 soybean landraces and cultivars from China, America and Europe, and 35 

investigated their population structure, genetic diversity and architecture and selective 36 

sweep regions of accessions. We identified five novel agronomically important genes 37 

and studied the effects of functional mutations in respective genes. We found 38 

candidate genes GSTT1, GL3 and GSTL3 associated with isoflavone content, CKX3 39 

associated with yield traits, and CYP85A2 associated with both architecture and yield 40 

traits. Our phenotype-gene network analysis revealed that hub nodes play a role in 41 

complex phenotypic associations. In this work, we describe novel agronomic trait 42 

associated genes and a complex genetic network, providing a valuable resource for 43 

future soybean molecular breeding. 44 

 45 

Introduction 46 

Soybean Glycine max [L.] Merr. is one of the most important crops worldwide of 47 

vegetable oil and proteins source for human and livestock feed etc. Soybean 48 

originated in China and its wild species (G. soja Sieb. & Zucc.) were domesticated in 49 

approximately 3,000 B.C. before introduced to Korea and Japan about 3,000 years 50 

later. It was brought to Europe and North America in the 18th century, and extensively 51 

cultivated on a global scale since the 19th century[1].  52 

With the rapid development of modern molecular biology and the 53 

high-throughput sequencing technologies, whole-genome resequencing and genome 54 

wide association studies (GWAS) have become common methods used to study 55 

population genetic diversity and locating phenotypic related quantitative trait loci 56 

(QTL) or genes. This has improved our knowledge extensively in crop genomes and 57 
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selective breeding. In recent years, for example, there are increasing number of 58 

reports on the domestication and improvement of soybean at the genome-wide level. 59 

This includes genes and genetic networks related to soybean agronomic traits and 60 

functions[2-4]. However, due to the diversity of soybean varieties and their complex 61 

genetic background, our knowledge of the soybean genome and functional genes is 62 

still limited in comparison to rice and maize. A greater number of soybean varieties 63 

need further exploration at the genomic level, particularly in relation to molecular 64 

traits associated with edible quality, soybean “ideotype” and the underlying genetic 65 

network of high-yielding varieties.  66 

In this study, we collected 250 soybean varieties from the core Northeast China 67 

soybean germplasm pool, which consisted of 134 accessions of landrace and cultivar 68 

from Northeast and Northwest China, as well as 116 accessions from European and 69 

North American cultivars. The genomes of the most accessions are not sequenced 70 

previously. We performed the high-depth whole-genome resequencing and 71 

comprehensive analyses of this 250 soybean population. The generated dataset 72 

revealed valuable new information on soybean genome structure, novel genes 73 

associated with important agronomic traits and the genetic networks. These genetic 74 

resources provide unique references into molecular breeding and evolution study in 75 

soybean. 76 

 77 

Results 78 

Genome resequencing and variation calling 79 

High-depth whole genome resequencing was performed on 250 soybean accessions, 80 

including 51 landraces and 83 cultivars originating from provinces in Northeast China 81 

(i.e. Heilongjiang, Jilin, Liaoning and Northeast Inner Mongolia) and Northwest 82 

China (i.e. Xinjiang, Ningxia and Gansu), as well as 116 cultivars originating from 83 

Europe and North America (Figure 1a, Supplementary Table 3). In total, we 84 

obtained approximately 10G of pair-end reads and 3T bases. The maximum 85 

sequencing depth of a single accession was 22.5x, with the average depth at 11x. After 86 
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filtering out the raw sequencing data (see methods), the remaining high-quality 87 

cleaned data were compared with the soybean reference genome G. max v2.0[5]. The 88 

effective mapping rates ranged from 74.8% to 87.6%, while the genome coverage 89 

ranged from 94.8% to 97.0% (Supplementary Table 1). The high mapping rates and 90 

coverage guarantee that the sequenced data is reliable and of high quality.  91 

Through standard variation detection, genotype filtering and imputation steps 92 

(see methods), we detected in total 6,333,721 single nucleotide polymorphisms (SNPs) 93 

and 2,565,797 insertion & deletions (Indels). This includes 244,360 SNPs and 62,714 94 

Indels located in the exon regions. The ratio of non-synonymous SNP to synonymous 95 

SNP substitution was 1.37. There are 4,311,814 SNPs with a minor allele frequency 96 

(MAF) larger than 0.05 (Supplementary Table 2 & Supplementary Figure 1). In 97 

summary, we achieved over 6M high-density and high-quality genotype data from 98 

250 soybean accessions with a density of one SNP per 15 bases.  99 

 100 

Population structure of soybean landraces and cultivars 101 

Using the 6M SNP genotype dataset, we constructed a phylogenetic tree using the 102 

neighbour joining (NJ) method. This resulted in the classification of the 250 soybean 103 

accessions into four groups (Figure 1b). Among them, Group 1 included 65 Chinese 104 

varieties, four European and six American cultivars, whereas Group 2 contained 56 105 

Chinese varieties, one European and 13 American varieties. In Group 3, there were 21 106 

European, two Chinese and six American cultivars, while 65 North American 107 

cultivars and 11 Chinese varieties were clustered within Group 4 (Figure 1c). 108 

Principal Component Analysis (PCA) results were consistent with the phylogenetic 109 

tree results. Three groups, Group 1, 3, and 4 radiated away from Group 2 within the 110 

rectangular coordinate system projected using eigenvector 1 and eigenvector 2 data on 111 

X and Y axes, respectively. Concurrently, the distribution of varieties in the four 112 

groups had continuity, indicating varieties located in different groups also have 113 

genetic similarities (Figure 1e). A Bayesian clustering algorithm based on a mixed 114 

model was used to estimate the proportion of ancestors in each accession. That is, 115 

when K = 2, the main ancestor component (yellow) of Group 4 was split, indicating 116 
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that Group 4 has the highest level of selection. When K = 3, the main ancestor 117 

component (blue) of Group 3 was split, indicating that Group 3 has the second level 118 

of selection. However, when K = 4 and K = 5, Group 1 and Group 2 exhibit complex 119 

differentiated mixed ancestor components, indicating a higher genetic diversity and 120 

lower selection level in Groups 1 and 2 (Supplementary Table 3, Figure 1d). 121 

These results indicate that group classification of the 250 soybean accessions is 122 

closely related to their geographical distribution. That is, varieties with similar 123 

geographical distribution have similar genetic backgrounds. Generally speaking, the 124 

group classification was also related to the level of domestication. Landraces have a 125 

lower level of domestication, while cultivars have higher levels of domestication. 126 

Varieties with similar domestication levels tend to have a higher similarity in genetic 127 

backgrounds. However, there are still differences in geographical distribution and 128 

domestication level among breeds with similar genetic backgrounds, indicating that 129 

gene exchange may have occurred between accessions of different groups. This 130 

observation reflected the complexity of soybean domestication history.  131 

 132 

Genetic diversity and selective sweep analysis 133 

Linkage disequilibrium (LD) analysis showed that the overall LD decay distance was 134 

more than 100 kb, and the LD decay distance of the landraces was smaller than that of 135 

the cultivars (Figure 2A). Further LD decay analysis of the four groups showed that 136 

the LD decay distance of Group 1 was the smallest, followed by Groups 2 and 3, 137 

while Group 4 had the largest LD decay distance (Figure 2B). In addition, the LD 138 

levels varied for different chromosomes or different regions across one chromosome. 139 

Identical by state (IBS) analysis can reflect the degree of relatedness among 140 

individuals by calculating the consistency of all genetic markers. The IBS values of 141 

all comparisons in each group were calculated, and it was found that the average IBS 142 

values of landraces were less than that of cultivars (Figure 2C). The IBS values of 143 

Groups 1-4 followed the same trends as that of LD decay distance. In particular, the 144 

IBS values of Group 1 were the lowest and the IBS values of Group 4 were the 145 

highest of all groups (Figure 2D). θπ values can reflect the genetic diversity within a 146 
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population by calculating the number of different sites between any two sequences or 147 

individuals within a population. Fst is a calculation used to measure the 148 

differentiation and genetic distance between two populations. θπ values were 149 

calculated for landraces, cultivars, all accessions, and Groups 1-4. Fst values were 150 

calculated between landraces and cultivars, and between each comparison of the four 151 

Groups. Results show that a population with a higher level of LD decay distance or 152 

higher IBS values correlate with a smaller θπ (Figure 2E, F). This pattern is opposite 153 

to that of the LD decay and IBS values. The lowest Fst value was for Group 1 versus 154 

Group 2, while the highest value was for Group 3 versus Group 4. We also observed 155 

that the Fst value of Group 2 versus Group 3 was higher than that of Group 1 versus 156 

Group 3 (Figure 2G). The Fst value of Group 2 versus Group 4 was smaller than that 157 

of Group 1 versus Group 4. In addition, the results of allele frequency distribution 158 

(AFD) analysis, as an alternative population similarity measurement, were consistent 159 

with the Fst results (Supplementary Figure 2). The population diversity analysis 160 

results, when combined with population structure and geographical distribution 161 

information, infer that the European and American soybean varieties may have 162 

originated from different Chinese ancestors before undergoing independent selection. 163 

Results indicate that European cultivars and the Chinese landrace group (Group 1) in 164 

our study have a more recent common ancestor, while North American cultivars and 165 

the Chinese cultivar group (Group 2) have a more recent common ancestor. 166 

Tajima’ D (based on a neutral test), θπ (based on genetic diversity within a 167 

population), and Fst (based on genetic diversity between two populations), have 168 

provided us with highly effective tools that screen selective sweep signals across a 169 

genome[6]. We combined methods in pairs for mining potential selective sweep 170 

regions in the soybean genome that may have underwent artificial selection. One pair 171 

was Tajima' D combined with θπ for the whole population. Another pair was Fst 172 

combined with θπ ratios between two subpopulations, landrace and cultivar. We used 173 

a sliding window method to calculate the values of Tajima’ D, θπ, and Fst in each 174 

window across the whole genome, and selected the top 5% most significant windows 175 

as potential selective sweep regions (Supplementary Figure 3A, B). A total of 148 176 
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and 222 potential selective sweep regions were screened by the two methods, and they 177 

covered 36.09 Mb and 88.15 Mb genome regions, respectively (Supplementary 178 

Table 4). These potential selective sweep regions covered 9,128 genes, accounting for 179 

approximately one sixth of all soybean genes. A total of 1,876 genes were screened by 180 

both methods (Supplementary Figure 3C). A runs of homozygosity (ROH) region is 181 

a continuous homozygous chromosome region in a genome, which may relate to 182 

domestication or artificial selection[7]. Through ROH analysis, 71 ROH regions 183 

larger than 300 kb were obtained from all 250 accessions, with a total length of 27.84 184 

Mb. The longest ROH regions up to 911 kb were located at the beginning of 185 

chromosome 10 (Supplementary Table 5). There were 3,397 genes located in these 186 

ROH regions, 924 of which were also located in the potential selected sweep region 187 

(Supplementary Figure 3D). 188 

 189 

Phenotype-related loci and genes identified using GWAS analysis 190 

We measured 50 agronomic traits in 250 soybean accessions from three geographic 191 

locations for three years, and then integrated them using best linear unbiased 192 

prediction (BLUP). The 50 traits included traits related to architecture (15), colour (5), 193 

isoflavone (1), oil (4), protein (18) and yield (7) and were classified into six categories 194 

(Supplementary Table 6). We calculated Pearson correlation coefficients for traits so 195 

as to compare within and between categories, and found that traits in the same 196 

categories were more strongly correlated than traits in different categories. For 197 

example, there were strong positive or negative correlations between almost all 198 

protein-related traits, oil-related traits and yield-related traits. Linoleic acid content 199 

was positively correlated with linolenic acid content, but negatively correlated with 200 

oleic acid content. Stem intension was negatively correlated with lodging 201 

(Supplementary Figure 4). Some traits were evenly distributed, while others were 202 

ranked (Supplementary Figure 5-54). 203 

Using 4,311,814 SNPs with a MAF > 0.05 as an input, we performed GWAS 204 

analysis using the mixed linear model (MLM) method for 50 agronomic traits. For 205 

each trait, we used a clump based method[8] and defined a significant associated loci 206 
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(SAL) at a chromosome region with a substantial amount of SNPs associated with the 207 

trait. A total of 203 SALs were detected in 43 traits (Supplementary Figure 5-54, 208 

Supplementary Table 7). Since each SAL may contain dozens of genes, we used a 209 

functional mutation based haplotype test method for further mining of the most 210 

reliable candidate trait associated genes[9]. In particular, we considered only the 211 

non-synonymous SNPs, frameshift Indels, mutations within a gene that happened on a 212 

start or stop codon, splice site or transcription start sites as effective functional 213 

mutations. We used these mutations to classify a gene into different haplotypes, and 214 

subsequently tested the phenotypic differences of the accessions belonging to each 215 

haplotype. A gene with significant phenotypic differences was defined as significant 216 

associated gene (SAG), and 3,165 SAGs were screened in 43 traits. These SAGs 217 

include some QTL or genes that have been previously identified, such as: the flower 218 

colour related chr13:16551728-19506795; pubescence colour related 219 

chr6:16930159-19168772; seed coat lustre related chr15:8910798-10281804; 220 

palmitic acid content related chr5:879095-1682551[4]; isoflavone content related 221 

chr5:38880530-39142565[10]; plant height related Dt1[4]; and oil content related 222 

FAD2 and SAT1[11], among others. They also contain genes that we have identified 223 

for the first time in soybean, such as: the isoflavone content related GL3 and GSTL3; 224 

the yield traits related CKX3; and the architecture and yield traits related CYP85A2. 225 

 226 

Novel genes related to isoflavone content 227 

Isoflavone content is an important quality-related trait in soybean, but its molecular 228 

mechanism is still unclear. Here we identified four SALs related to isoflavone content, 229 

namely chr3:38590023-38728718, chr5:3888053-39142565, 230 

chr13:18342836-18541809, and chr5:24726091-24852447. Only one SAL 231 

chr5:24726091-24852447 overlaps with a previously reported QTL that contains a 232 

GST (Glutathione S-transferase) gene GSTT1[10]. All other SALs are newly identified. 233 

There are 48 genes located within these SALs (Supplementary Table 8), and three 234 

genes (GSTT1, GL3 and GSTL3) may be related to isoflavone content (Figure 3A, B). 235 

There are two functional mutation sites at c5s38936266 and c5s38940717, forming 236 
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two haplotypes for GSTT1a and GSTT1b, respectively. For each GSTT1 gene, soybean 237 

accessions with a different haplotype have significantly different isoflavone contents. 238 

Since GSTT1a and GSTT1b are approximately only 1 kb apart from each other in the 239 

same genome region, we considered the two genes to be one in further analysis. Three 240 

haplotypes were formed by two functional mutation sites when the two GSTT1 genes 241 

were analysed as one. Haplotype 1 versus Haplotype 2, as well as Haplotype 2 versus 242 

Haplotype 3 showed significant differences in isoflavone content, while Haplotype 1 243 

versus Haplotype 3 showed no significant differences (analysed using Tukey’s test). 244 

This suggests that GSTT1a is associated with isoflavone content due to its linkage 245 

with GSTT1b. However, c5s38936266 did not contribute to the isoflavone content 246 

difference. Thus, only c5s38940717 on GSTT1b was associated with isoflavone 247 

content (Figure 3C).  248 

    We found that two functional mutations, c5s39035509 and c5s39036346 249 

producing two haplotypes in GL3, were associated with different isoflavone contents 250 

in soybean accessions (Figure 3D). We also identified another GST gene, GSTL3, 251 

which was located in chromosome 13. Two functional mutations produced three 252 

haplotypes, and significant associations between the different haplotypes and 253 

isoflavone content was detected for each comparison (Figure 3E). Based on the 254 

above results, we drew a schematic diagram of the roles of candidate genes according 255 

to their biological functions where we indicate that GL3 regulates isoflavone synthesis, 256 

whilst GSTT1 and GSTL3 participate in isoflavone transport (Figure 3F). 257 

 258 

Yield related traits and the artificial selection of CKX3 259 

Four yield related traits (pod number per plant, seed number per plant, one hundred 260 

seed weight and seed size) have a common SAL located at the ~4.0 Mb to ~4.2 Mb 261 

region of chromosome 17 (Figure 4A). Further analysis revealed that this SAL 262 

contains two tandem repeat CKX (cytokinin oxidase/dehydrogenase) genes named 263 

CKX3 and CKX4, approximately 15 kb apart from each other (Figure 4F).  264 

We further analysed the relationship between functional mutations in CKX3 and 265 

CKX4. There were three non-synonymous SNPs on CKX3 and two non-synonymous 266 
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SNPs on CKX4. As these two genes are only approximately 3 kb apart from each 267 

other in the same genome region, we analysed the two genes separately as well as 268 

combined as one in relation to their association with haplotypes and traits (Figure 269 

4B-E). Results showed that the functional mutations can both form three haplotypes 270 

for CKX3 and CKX4 separately, and four haplotypes for CKX3+4 combined. For all 271 

comparisons in all traits, Haplotype 1 always showed significant differences 272 

compared with the other haplotypes. The relationship between different haplotypes in 273 

terms of pod or seed number per plant showed a consistent trend, while that of one 274 

hundred seed weight or seed size showed a consistent but opposite trend. There was a 275 

phenotypic correlation between pod number per plant and seed number per plant 276 

(0.92), and between one hundred seed weight and seed size (0.67) (Figure 4F). 277 

Furthermore, we observed that CKX3 and CKX4 were located in different strands of 278 

the same chromosome, suggesting they are more likely to have independent functions. 279 

However, we did not detect expression of CKX4 in the subsequent qPCR validation. 280 

Thus, only CKX3 is regarded as a real candidate gene, while the role of CKX4 need 281 

further study. 282 

When we compared the soybean accession information of each haplotype for the 283 

four yield-related traits, we observed that most accessions with the Haplotype 1 284 

genotype had dominant traits (lower pod or seed numbers and larger seeds and seed 285 

weights), and were more associated with cultivars. The other haplotypes were mainly 286 

landrace-specific haplotypes, and these accessions all belong to Group 1. We found 287 

that CKX3 was also located on a strong selective sweep region. This indicates that the 288 

functional mutation sites in CKX3 experienced strong directed artificial selection, 289 

resulting in genotype differences and affecting yield related traits. Furthermore, we 290 

compared all SAGs and selective sweep regions for all traits, and found that 291 

approximately 12% of genes are located in the selected sweep regions, which have 292 

experienced artificial selection (Supplementary Table 9). It is interesting to note that 293 

of all the SAGs located in selective sweep regions, about 55% are related to yield 294 

traits, 36% related to protein traits, and less than 10% are related to other traits 295 

(Figure 4G, H).  296 
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 297 

CYP85A2 is associated with architecture and yield traits 298 

There is one SAL on chromosome 18 which is associated with six traits including 299 

plant height, main stem number, stem strength, lodging, podding habit, and seed 300 

weight per plant. Interestingly, these traits include both architecture and yield related 301 

traits. A cytochrome P450 family gene named CYP85A2 is located within a 4.37 kb 302 

region of this SAL (Figure 5A, B). The association of the CPY85A2 gene with 303 

architecture and yield traits in soybean is a novel finding. We also observed that a 304 

non-synonymous mutation site c18s55526062 is involved in producing two 305 

haplotypes. The haplotype with a CC genotype has a dwarf plant height, a low main 306 

stem node number, a high stem strength and a low lodging rate. When plants produced 307 

mostly limited or semi-limited pods, their seed weight per plant was also found to 308 

increase (Figure 5C). Phenotypically, plant height was positively correlated with 309 

main stem node number (0.95), while stem strength and lodging were negatively 310 

correlated (-0.81), showing a trend consistent with the genotype (Figure 5D). The CC 311 

genotype of c18s55526062 is a dominant genotype, which is useful when designing 312 

an ideal plant type and increasing soybean yield. 313 

 314 

Different phenotypes coupled through hub gene modules form a complex 315 

phenotype-gene network 316 

Based on in-depth exploration of the GWAS results, we observed that one trait is 317 

associated with multiple genes and vice versa. At the same time, due to widespread 318 

protein-level interactions between genes, a complex network was also found between 319 

various phenotypes and genes. In order to explore this further, we used a functional 320 

mutation-based haplotype test to screen SAGs in all SALs for all traits. We then 321 

constructed a phenotype-gene network which included 34 traits and 853 SAGs 322 

(Figure 6). At the trait level, they were divided into six categories, namely 323 

architecture, colour, oil, isoflavone, protein, and yield. At the gene level, besides the 324 

six categories, there emerged a mixed category with which genes associated more 325 

than with any one trait category. We found that traits in the same category were 326 
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closely linked within the entire network. However, some trait categories were also 327 

linked with each other, such as yield, oil, protein and colour, and they were all closely 328 

linked to architecture through common SAGs. This suggests that there are subtle 329 

relationships between architecture and other trait categories. In this genetic network, 330 

six trait categories were linked through 15 hub nodes containing a total of 367 genes 331 

(Supplementary Table 10). The largest hub was HA1 (short form for Hub 332 

Architecture 1). The genes in this hub were only associated with two or more 333 

architecture-related traits. Unlike HA1, the genes in the HA2 node were associated 334 

with two or more architecture-related traits, but also had protein interactions with 335 

other genes. Multiple yield traits were associated with hub HY1, containing CKX3, 336 

while hub HM4, which contains CYP85A2, was connected with architecture and yield 337 

traits.  338 

 339 

Discussion 340 

In this study, we deeply sequenced 250 representative landrace and cultivar soybean 341 

accessions. Through population genetics and GWAS analyses, the genetic structure of 342 

European soybean varieties was analysed for the first time. Novel candidate genes 343 

related to seed isoflavone content, yield and architecture traits were identified. 344 

Moreover, we constructed a soybean phenotype-gene interaction network, and found 345 

evidence of the improvement of soybean yield related traits at molecular level. 346 

A total of ~3T bases and 6M SNPs were obtained, the maximum sequencing 347 

depth of a single accession was 22.5x, with the average depth at 11x (higher than 348 

previous soybean resequencing studies[2-4]. Eighty-four percent of the accessions 349 

with their genome were sequenced for the first time, which provides new data for 350 

soybean genome research. Previous soybean research mainly focused on varieties 351 

from Asia and North America, but not Europe[3, 4]. This study completed the 352 

resequencing of 26 European accessions and, for the first time, outlines a breeding 353 

history of European soybean. It was found that European soybean cultivars had higher 354 

genetic diversities and lower breeding levels compared to North American cultivars. 355 
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Both European and American soybean cultivars may have been introduced from 356 

different ancestors in China. This theory is based on the following findings: there is a 357 

small population difference between European varieties and Chinese landraces, and 358 

between American varieties and Chinese cultivars, whilst there is a large population 359 

difference between American and European varieties (Figure 2G, Supplementary 360 

Figure 2). Our findings are consistent with the current hypothesis that soybean 361 

originated in China, and they show that ancestral components from the area of origin 362 

are the most complex. This study showed that the heterozygosity rates of most 363 

accessions are less than 0.2, except four accessions with a higher heterozygosity 364 

which may be caused by their complex ancestral compositions (Supplementary 365 

Table S3). Further combination analysis of the selective sweep and GWAS revealed 366 

that artificial selection of soybean at the phenotypic level is consistent with the 367 

genome level. Genomic regions associated with yield and quality traits are more 368 

likely to experience artificial selection. This may be a reflection of yield- and 369 

quality-directed artificial selection of soybean breeding at the genetic level. 370 

Furthermore, evidence of functional mutations under artificial selection for a 371 

candidate gene CKX3 related to multiple yield traits were identified. The results of 372 

this study provide valuable information for marker-assisted selection, which is vital in 373 

the improvement of soybean breeding. 374 

Isoflavone is a secondary metabolite produced via phenylpropane metabolic 375 

pathways in higher plants. Isoflavone is associated with plant stress resistance, 376 

defence against microbial and insect infection, promotion of rhizobium chemotaxis, 377 

and the development of rhizome and nitrogen fixation in plants. It also provides health 378 

benefits to human, such as in reducing the incidence of cancer and cardiovascular 379 

diseases, and regulating the immune response[12]. Therefore, increasing the seed 380 

isoflavone content of soybean can improve its nutritional and health benefits. 381 

However, few genome-wide studies have investigated the molecular mechanism of 382 

soybean’s isoflavone content. Isoflavone is synthesized in the cytoplasm, but due to 383 

cell cytotoxicity, it cannot accumulate in the cytoplasm and must be continuously 384 

transported to vacuoles for storage. Therefore, isoflavone content mainly depends on 385 
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two factors: synthesis efficiency and transport efficiency[13]. The transcript factor 386 

GL3 is a bHLH gene family member which can form the MYB-bHLH-WD40 (MBW) 387 

complex with two other transcription factors (MYB and WD40) to jointly regulate the 388 

synthesis of flavonoids and anthocyanin in plants[14]. GST can bind with glutathione 389 

(GSH) to form an ABC transporter to transport and catalyse the entry of flavonoids 390 

into vacuoles for accumulation[13]. In this study, we identified four novel genes that 391 

may be associated with isoflavone content. These genes include transcription factors 392 

GL3, which participate in the regulation of multi-enzyme systems from 393 

phenylpropanoid to isoflavone biosynthesis pathways, and two GST genes, GSTT1 394 

and GSTL3, which facilitate the transporting of isoflavone from the cytoplasm to 395 

vacuoles (Figure 3F). In addition, we observed many other genes in the SALs, such 396 

as cation/H+ exchanger (CHX20), pyrophosphorylase 4 (PPa4), an actin 397 

depolymerizing factor 7 (ADF7), a mitochondrial substrate carrier family protein, a 398 

myosin heavy chain-related protein, an ATP synthase alpha/beta family protein, and a 399 

protein kinase superfamily protein, among others (Supplementary Table 8) are all 400 

related to isoflavone transport. This over-representation of transport-related genes 401 

further suggests that the accumulation of soybean isoflavone is related to its transport 402 

to the vacuole. In conclusion, soybean isoflavone content is not merely determined by 403 

one or several genes or loci, but by a multiple gene system involved in synthesis, 404 

regulation, transport, and storage.  405 

We observed that other novel candidate genes, such as CKX3, is associated with 406 

multiple yield traits. We also observed, for the first time, that CYP85A2 is associated 407 

with multiple architecture and yield traits in soybean. It is well-known that cytokinin 408 

promotes cell division and plant growth, and CKX is one of the key enzymes in 409 

cytokinin metabolism. A functional variation in the CKX gene may affect the 410 

cytokinin metabolism, thus affecting grain yield and related traits. A number of 411 

studies on Arabidopsis thaliana, rice and other crops have shown that mutation or 412 

reduced expression levels of CKX family genes are related to a decrease in seed 413 

setting rate and an increase in seed weight[15, 16]. CYP85A2 is involved in the 414 

brassinosteroid biosynthesis pathway in Arabidopsis thaliana and it converts 415 
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6-deoxocastasterone to castasterone, which is followed by the conversion of 416 

castasterone to brassinolide[17]. Brassinosteroids (BRs) are broad-spectrum plant 417 

growth regulators, playing an important role in plant growth and development, as well 418 

as in biological and abiotic stress responses[18]. Mutations in the CYP85A2 gene have 419 

led to an increased production of the dwarf phenotype[19], and an overexpression of 420 

the CYP85A family gene resulting in increased BR content, biomass, plant height, 421 

plant fresh weight and fruit yield[20]. These results showed that, CKX3 and CYP85A2 422 

may affect soybean yield and architecture related traits through different molecular 423 

mechanisms. The potential effect of functional mutations in these genes on the 424 

phenotypes was further confirmed by our haplotype tests. However, to verify whether 425 

these candidate genes and functional mutations are the true cause of the phenotypic 426 

differences, further functional verification of these genes is necessary. Multiple 427 

methods such as the construction of isolated populations, transgene, gene knockout, 428 

gene editing, and expression verification could be used for this purpose. In this study, 429 

we performed expression verification in seedlings with different 430 

haplotypes/phenotypes for six genes GL3, GSTL3, GSTT1b, CKX3, CKX4 and 431 

CYP85A2. The results show that, except for no expression were detected for CKX4, 432 

all the other five genes were expressed differently for different haplotypes/phenotypes 433 

in seedlings; the expression levels of GL3, GSTL3 and GSTT1b related to isoflavone 434 

content in the strains with high isoflavone content values was significantly higher than 435 

that in the strains with low isoflavone content values (T-test, P<0.05); the expression 436 

level of CKX3 in the strains with high yield phenotype values was significantly higher 437 

than that in the strains with low yield phenotype values (T-test, P<0.05) 438 

(Supplementary Figure 55). 439 

The highest goal of plant breeding is to aggregate many desired traits into a 440 

single genome. Breeders need to simultaneously select and improve multiple related 441 

traits. However, because multiple traits are interrelated, it is possible that when 442 

screening for a favourable trait one also selects an unfavourable one. Understanding 443 

the genetic network behind different traits can help breeders increase breeding 444 

efficiency. Although soybean genetic networks for multiple agronomic traits have 445 
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been established at the loci level[4], we built a new phenotype-gene network which 446 

includes 34 traits and 853 genes. This network reflects the relationship between 447 

phenotypes and genes more directly than the previous phenotype-SAL network, and is 448 

more conducive to the discovery of important candidate genes. For example, the Hub 449 

Mixed 1 (HM1) node was associated with two or more trait types (architecture, colour 450 

or protein), while the HBT gene in the HM1 node was associated with six architectural 451 

traits (branch number, main stem number, plant height, stem strength, lodging, and 452 

podding habit) and four protein-related traits (phenylalanine content, isoleucine 453 

content, tyrosine content, and glycine content). It is known that the HBT gene belongs 454 

to the CDC27b gene family and is involved in cell cycle regulation, which is related 455 

to cell development and division[21]. Therefore, soybean architecture is likely 456 

affected by HBT, despite its relationship with amino acid content is unclear. There are 457 

also many other interesting examples of the above. Leaf shape is known to affect 458 

photosynthesis efficiency, followed by carbohydrate accumulation, and, as a 459 

consequence, oil accumulation, while Hub HM2, containing FAD2, connects oil 460 

content and leaf shape[22]. It has also been reported that oil traits and seed coat lustre 461 

traits experienced parallel selection during bean domestication[23]. The hub HM3 462 

node connects oil-related traits and seed coat lustre. Anthocyanin synthesis and 463 

isoflavone synthesis share part of their metabolic pathways and hub HM5 connects 464 

colour traits and isoflavone content. Our phenotype-gene network may surpass the 465 

phenotype-SAL network in terms of candidate gene selection, which is also beneficial 466 

to polymerization breeding programs. For example, breeders can achieve 467 

polymerization breeding by directly selecting a favourable gene (such as CYP85A2) in 468 

Hub HM4, which is related to both yield and architecture traits, and eliminate the 469 

confusion of other adverse genes located in the same SAL. Furthermore, it is worth 470 

noting that the architecture related traits, which centrally connect various other trait 471 

categories, have the most extensive connectivity. In other words, there are numerous 472 

relationships between architecture related traits and other trait categories in the 473 

phenotype-gene network (Figure 6), suggesting that some candidate genes related to 474 

architecture traits may also be related to other trait types. This may provide theoretical 475 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428693doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428693


 17

support and practical guidance for parallel selection breeding and promote “ideotype” 476 

breeding in soybean. The next step is to conduct more in-depth functional 477 

investigations on genes with a potential application value, such as CKX3 and 478 

CYP85A2. This would help promote the design and breeding process of soybean 479 

varieties with a higher yield and quality. Overall, our work is conducive to promoting 480 

soybean genome functional research and genomic breeding. 481 

 482 

Materials and Methods 483 

Plant materials and phenotyping 484 

A total of 250 soybean varieties were analysed in this study, which were provided by 485 

the National Crop Germplasm Resources Platform, Institute of Crop Genetics, 486 

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences. All materials 487 

were planted and phenotyped at three locations: the Gongzhuling experimental site in 488 

the Jilin Academy of Agricultural Sciences (latitude 43.51°, east longitude 124.80°), 489 

the Harbin experimental site in the Heilongjiang Academy of Agricultural Sciences 490 

(45.68° north latitude, 126.61° east longitude), and the Chifeng experimental site un 491 

the Agricultural Science Institute in Inner Mongolia (42.27° north latitude, 118.90° 492 

east longitude) in late April of 2008, 2009 and 2010, respectively. Grain protein 493 

content was measured using the Kjeldahl method from National Food Safety Standard 494 

GB5009.5-2010 China[24], while the grain fatty acid contents were determined using 495 

the Soxhlet extraction method from National Food Safety Standard GB/T5512-2008, 496 

China[25]. Amino acid content was determined using high performance liquid 497 

chromatography (S433D, Seckam, Germany) following a previous amino acid 498 

determination method from National Food Safety Standard GB/T 18246-2000, 499 

China[26]. Grain isoflavone content was determined using high performance liquid 500 

chromatography from National Food Safety Standard GB/T23788-2009, China[27]. 501 

Finally, the phenotypic data were integrated using the BLUP (Best Linear Unbiased 502 

Prediction) method using R[28] in order to remove environmental effects and obtain 503 

stable genetic phenotypes. Seeds were planted in (CLC-BIV-M/CLC404-TV, MMM, 504 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428693doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428693


 18

Germany) at 20°C (with 12-h day/12-h night) and a relative humidity of 60–80% till 505 

six leaves stage (about two-week-old). Two-week-old seedlings (24°C, 12-h day/12-h 506 

night cycle) were used in this qPCR validation.  507 

 508 

DNA preparation and sequencing 509 

The genomic DNA for all soybean accessions were extracted from soybean leaves 510 

after three weeks of growth. DNA extraction was performed using the 511 

cetyltrimethylammonium bromide (CTAB) method[29]. The library for each 512 

accession was constructed with an insert size of approximately 500 base pairs, 513 

following manufacturer’s instructions (Illumina Inc., San Diego, CA, USA). All 514 

soybean accessions were sequenced and paired-end 150 bp reads were produced using 515 

an Illumina NovaSeq 6000 sequencer at the BerryGenomics Company 516 

(http://www.berrygenomics.com/ Beijing, China). 517 

 518 

Total RNA extraction, cDNA synthesis and qRT-PCR analysis 519 

Total RNA was isolated for each sample using TRIzol Reagent (Invitrogen, 520 

Nottingham, UK) according to the manufacturer's instructions. The purified RNA was 521 

stored at -80°C until subsequent analyses. According to the manufacturer's 522 

instructions (Takara, Shiga, Japan), first-strand cDNA synthesis was performed using 523 

M-MLV reverse transcriptase. Quantitative real-time PCR (qRT-PCR) was performed 524 

using a SYBR Premix Ex Taq Kit (Takara) and a real-time PCR machine (CFX96; 525 

Bio-Rad, Hercules, CA, USA), following the manufacturer's instructions. The 526 

procedure used for qRT-PCR was 95°C at 10 minutes, followed by 38 cycles of 15 s at 527 

95°C and 60 s at 61-62°C. β-actin was used as a reference gene for analysis of relative 528 

expression patterns of mRNA. The reactions were carried out with three biological 529 

replicates, with at least two technical replicates for each sample. The data were 530 

analyzed using the method according to the previous study[30], and the means ± 531 

standard errors (SE) of three biological replicates are presented. 532 

 533 

Mapping, variant calling and annotation 534 
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Raw paired-end resequencing reads were first cleaned by removing reads with 535 

adaptors, reads of low quality and reads with “N”s. The high-quality clean reads were 536 

then mapped to the soybean reference genome (Williams 82 assembly v2.1) with 537 

BWA[31]. Statistical analyses of mapping rate and genomic coverage of clean reads 538 

were performed using in-house scripts. The Speedseq pipeline[32] was used for SNP 539 

and Indel calling, and vcftools[33] was used for genotype filtering. Missing genotypes 540 

were imputed and phased through a localized haplotype clustering algorithm 541 

implemented using Beagle v3.0[34]. Variant annotation was performed using 542 

ANNOVAR[35] against the soybean gene model set v2.1.42. After annotation, SNPs 543 

and Indels were categorized into exonic, intronic, intergenic, splicing, 5′UTRs, 544 

3′UTRs, upstream, and downstream. Exonic SNPs were further categorized into 545 

synonymous, nonsynonymous, stop gain, and stop loss. Exonic Indels were further 546 

categorized into frameshift, non-frameshift, stop gain, and stop loss.  547 

 548 

Population structure analysis 549 

Approximately 6M SNPs from the 250 soybean accessions were concatenated for the 550 

construction of a phylogenetic tree. Using a neighbour joining algorithm with a 551 

pairwise gap deletion method for 100 bootstrap replications, a phylogenetic tree was 552 

constructed with MegaCC[36]. The output was displayed using the iTOL[37] web 553 

tool. With the whole genome genotype as the input, a principal component analysis 554 

(PCA) was done using flashPCA [38] and the first two eigenvectors were plotted. A 555 

population admixture analysis with k = 2 to k = 5 parameters were set to infer the 556 

admixture of ancestors using fastSTRUCTURE.  557 

 558 

Genetic diversity analysis 559 

Linkage disequilibrium analyses for each subpopulation were performed using 560 

PLINK[39] by calculating the correlation coefficient (r2) of any two SNP pairs in one 561 

chromosome. An LD decay plot was drawn using the average r2 value for the distance 562 

from 0 to 1,000 kb. Pairwise IBS calculations were also performed using PLINK and 563 

a distance matrix was generated for each subpopulation. Population genetic diversities 564 
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were measured using VCFtools[33] by calculating θπ and Fst. θπ was used to measure 565 

the genetic diversity of each subpopulation, while Fst, plus the allele frequency 566 

distribution (AFD) plot (which was generated by in-house scripts), were used to 567 

measure genetic diversity between subpopulations. In addition, sliding window 568 

calculations of r2, θπ, Fst and Tajima’ D values were also performed for genome-wide 569 

displays of soybean genetic diversities with a 100 kb window and a 10 kb step. 570 

 571 

Selective sweep analysis 572 

We used two methods to detect selective sweep regions across the soybean genome: 573 

Tajima’ D combined θπ and Fst combined θπ ratios. Firstly, a genome-wide sliding 574 

window calculation of θπ, Fst, and Tajima’ D values (with a 100 kb window and a 10 575 

kb step) were performed on landraces, cultivars, and the whole population, 576 

respectively. Secondly, the top 5% of the Tajima’ D and θπ windows for the whole 577 

population were selected. In addition, the top 5% of the Fst and θπ ratio windows for 578 

the landraces versus cultivars were also selected. Thirdly, the selected windows from 579 

these two methods were merged together to become the final selective sweep regions. 580 

ROH analyses for each accession were performed using PLINK[39] with the 581 

parameters of a minimum ROH length set to 300 kb.  582 

 583 

GWAS and significantly associated loci 584 

Association analysis for each trait on each SNP with an MAF larger than 0.05 was 585 

performed using a single-locus mixed linear model (MLM) implemented in 586 

GEMMA[40] (which corrects confounding by population structure and the 587 

relatedness matrix). The GWAS results were displayed using a Manhattan plot and a 588 

QQ-plot created with the R package CMplot[41] . A clump based method 589 

implemented in PLINK[39] was used to reduce a false peak and to detect real SALs. 590 

The P-value cut-off was set to 10-5 so as to, firstly, uncover significant associated 591 

SNPs. Following this, for each significantly associated SNP, if there were more than 592 

10 SNPs within a 100 kb distance that had P-values smaller than 10-4, then the region 593 

was regarded as a potential SAL. Finally, all overlapping SALs were merged to 594 
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generate final SAL sets and the SNP with the smallest P-value in a SAL was defined 595 

as a peak.  596 

 597 

Detection of significantly associated genes 598 

There are usually tens of genes in a SAL, and it is difficult to determine which genes 599 

are truly associated with traits and which are irrelevant. We improved a functional 600 

mutation-based haplotype test method for SAG discovery in SAL. As most variants 601 

within a gene are non-functional, the gene’s amino acid sequence and its function will 602 

not change. Only a few variants have the potential to change a gene’s amino acid 603 

sequence, such as nonsynonymous SNPs, frameshift Indels, variants in splicing sites, 604 

promoter regions, start codons, and stop codons. These combined functional 605 

mutations can only produce two or three different gene haplotypes. It is possible to 606 

test the relationship between gene haplotypes and traits. If they are significantly 607 

associated, then the gene is also most likely associated with the trait, which is how 608 

SAG is defined. In this study, Welch’s test was used for a two-group haplotype test 609 

and a Tukey’s test was used for a multiple group haplotype test to detect SAGs. 610 

Functional annotation of SAGs was directly retrieved from SoyBase[42]. 611 

 612 

Network construction 613 

Of all the genes located in the SALs, the most significant SAGs with a P-value 614 

smaller than 10-5, and their corresponding traits, were retained to build the 615 

phenotype-gene network for soybean. Protein-protein interaction information for 616 

soybean was retrieved form the String database[43] and mapped to the soybean genes 617 

using BLAST[44]. Construction, visualization and exploration of the network was 618 

performed using Cytoscape[45]. 619 

 620 

Data availability 621 

The raw sequence data reported in this paper have been deposited in the Genome 622 

Sequence Archive[46] in BIG Data Center[47], Beijing Institute of Genomics (BIG), 623 
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Chinese Academy of Sciences, under accession numbers CRA002552 that are 624 

publicly accessible at https://bigd.big.ac.cn/gsa. The variation data reported in this 625 

paper have been deposited in the Genome Variation Map [48] under accession number 626 

GVM000076 that can be publicly accessible at 627 

http://bigd.big.ac.cn/gvm/getProjectDetail?project=GVM000076. The bioinformatics 628 

analysis scripts used in this paper can be download through 629 

https://github.com/yjthu/GPB_250SoyReseq.  630 
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 800 

Tables 801 

Table1. Functional variants of representative significant associated genes 802 

Variant ID Chrom Positon Ref Alt Variant type Gene ID 

Gene 

symbol 

c5s38936266 5 38936266 C T nonsynonymous SNV GLYMA_05G206900 GSTT1a 

c5s38940717 5 38940717 C T nonsynonymous SNV GLYMA_05G207000 GSTT1b 

c5s39035509 5 39035509 G C nonsynonymous SNV GLYMA_05G208300 GL3 

c5s39036346 5 39036346 T C nonsynonymous SNV GLYMA_05G208300 GL3 

c13s24804891 13 24804891 C T nonsynonymous SNV GLYMA_13G135600 GSTL3 

c13s24805363 13 24805363 A T splicing SNV GLYMA_13G135600 GSTL3 

c17s4143663 17 4143663 C T nonsynonymous SNV GLYMA_17G054500 CKX3 

c17s4143832 17 4143832 T C nonsynonymous SNV GLYMA_17G054500 CKX3 

c17s4146922 17 4146922 G T nonsynonymous SNV GLYMA_17G054500 CKX3 
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c17s4151713 17 4151713 C A nonsynonymous SNV GLYMA_17G054600 CKX4 

c17s4151752 17 4151752 T C nonsynonymous SNV GLYMA_17G054600 CKX4 

c18s55526062 18 55526062 C T nonsynonymous SNV GLYMA_18G272300 CYP85A2 
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Figures 815 

 816 

Figure 1 817 

 818 

Figure 1 Population structure of 250 soybean accessions. A. Geographic distribution 819 

of 250 soybean landraces and cultivars. Landraces are shown with green color and 820 

cultivars are shown with yellow color. B. Phylogenetic tree constructed for all 821 

soybean accessions. Group1-4 are shown with different colors, Landraces are labeled 822 

with green triangles and cultivars are labeled with yellow triangles. C. Statistics of the 823 

geographic origin for each subpopulation. D. Mixed ancestors analysis for soybean 824 

subpopulations. Each color represents an ancestral component. K from 2 to 5 are set 825 

to trace different ancestral components.  E. PCA plot of the first two eigenvectors for 826 

all soybean accessions. Landraces and cultivars are shown will different shape, while 827 

groups are shown with different colors. 828 
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Figure 2 835 

 836 

Figure 2 Genetic diversity of soybean subpopulations. A. LD decay plots for landrace 837 

(green), cultivars (yellow) and all soybean accessions (grey). B. LD decay plots for 838 

soybean subpopulations. C. IBS values distribution for landrace (green), cultivars 839 

(yellow) and all soybean accessions (grey). D. IBS values distribution for soybean 840 

subpopulations.E. Comparison of θπ values for landrace (green), cultivars (yellow) 841 

and all soybean accessions (grey). F. Comparison of θπ values for soybean 842 

subpopulations. G. Comparison of Fst values between subpopulations. H. Landscape 843 

of soybean genetic diversity across the whole genome. (a) Chromosomes. (b) Density 844 

of genes (c) Density of SNPs (red) and Indels (blue). (d) LD values distribution for 845 

landraces(green), cultivars(yellow) and all accessions(grey). (e) Fst values 846 

distribution of landraces versus cultivars (f) θπ values distribution for 847 

landraces(green), cultivars(yellow) and all accessions(grey). (g) Tajima’D values 848 

distribution of all accessions. (h) Putative selective sweep regions detected by 849 

Tajima’D combine θπ. (i) Putative selective sweep regions detected by Fst combine 850 

θπ ratios. (j) ROH region larger than 300 Kb. 851 
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 30

 856 

Figure 3 857 

 858 

 859 

Figure 3 GWAS of soybean isoflavone content. A. Manhantan plot and four candidate 860 

genes for soybean isoflavone content. B. Chromosome location and transcripts 861 

structure of the candidate genes. C. Soybean isoflavone content distribution for the 862 

haplotypes of gene GSTT1. D. Soybean isoflavone content distribution for the 863 

haplotypes of gene GL3. E. Soybean isoflavone content distribution for the 864 

haplotypes of gene GSTL3. F. Diagram of soybean isoflavone synthesis and transport, 865 

and the roles of candidate genes detected by GWAS. (*P < 0.05; **P < 0.01; n.s., not 866 

significant) 867 

  868 
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Figure 4 870 

 871 

 872 

Figure 4 Association of CKX and yield related traits in soybean. A. Manhantan plot 873 

of four yield related traits pod number per plant, seed number per plant, one hundred 874 

seed weight and seed size, and the candidate CKX genes. B. Pod number per plant 875 

distribution for the haplotypes of CKX genes.C. Seed number per plant distribution 876 

for the haplotypes of CKX genes. D. One hundred seed weight distribution for the 877 

haplotypes of CKX genes. E. Seed size distribution for the haplotypes of CKX genes. 878 

F. Chromosome location and transcripts structure of CKX3 and CKX4. G. Phenotype 879 

correlation of four traits. H. Statistics of SAGs located in selective sweep regions and 880 

their percentage for trait categories. (*P < 0.05; **P < 0.01) 881 
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Figure 5 887 

 888 

 889 

Figure 5 Association of CYP85A2 and architecture or yield related traits in soybean. 890 

A. Manhantan plot of plant height, main stem number, stem strength, lodging, 891 

podding habit, seed weight per plant, and the candidate gene CYP85A2. B. Traits 892 

distribution for the haplotypes of gene CYP85A2. C. Chromosome location and 893 

transcripts structure of CYP85A2. D. Phenotype correlation of the six traits. (*P < 894 

0.05; **P < 0.01) 895 
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Figure 6 899 

 900 

 901 

Figure 6 Phenotype-gene genetic network in soybean. Traits are solid rhombuses, 902 

genes are solid circles, and hubs are hollow ellipses. Six trait categories, their 903 

associated genes and links between them are colored accordingly, genes associated 904 

with more than one trait categories are colored grey. Genes with protein-protein 905 

interaction are linked with gray lines.  906 
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Supplementary material 916 

Supplementary Tables 1-10; Supplementary Figures 1-55. 917 

 918 

Supplementary Table 1 Summary of mapping and coverage 919 

Supplementary Table 2 Summary of SNPs and Indels 920 

Supplementary Table 3 The ancestry proportion estimates for each accession 921 

Supplementary Table 4 Putative regions experiencing selective sweeps 922 

Supplementary Table 5 Summary of ROH regions in soybean varieties 923 

Supplementary Table 6 Information of 50 agronomic traits 924 

Supplementary Table 7 Summary of significant associated loci detected by GWAS 925 

analysis 926 

Supplementary Table 8 Genes located in significant associated loci for isoflavone 927 

content 928 

Supplementary Table 9 Genes located in both significant associated loci and putative 929 

selective sweep regions 930 

Supplementary Table 10 Summary of hub genes in soybean agronomic traits 931 

networks   932 

 933 

Figure S1 SNP density distribution across soybean chromosomes. 934 

Figure S2 Allele frequency distribution between soybean subpopulations. 935 

Figure S3 Selective sweep analysis for 250 soybean accessions. A. Selective sweep 936 

analysis by Tajima’D combine θπ. B. Selective sweep analysis by Fst combine θπ 937 

ratios. Red dots present the top 5% selected windows. C. Venn diagram of genes 938 

screened by two selective sweep analysis methods. D. Venn diagram of genes 939 

screened by two selective sweep analysis methods and ROH analysis. 940 

Figure S4 Phenotype correlations between 50 soybean traits. 941 
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Figure S5 GWAS of pod height at bottom using MLM. A. Density distribution of pod 942 

height at bottom. B. Manhattan plots for pod height at bottom. Negative log10 943 

P-values from a genome-wide scan are plotted against SNP positions of 20 944 

chromosomes. C. Quantile-quantile plot for pod height at bottom. The horizontal red 945 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 946 

significant threshold are colored in red. 947 

Figure S6 GWAS of effective branch number using MLM. A. Density distribution of 948 

effective branch number. B. Manhattan plots for effective branch number. Negative 949 

log10 P-values from a genome-wide scan are plotted against SNP positions of 20 950 

chromosomes. C. Quantile-quantile plot for effective branch number. The horizontal 951 

red line indicates the significant threshold (10-5). Trait-associated SNPs above the 952 

significant threshold are colored in red. 953 

Figure S7 GWAS of pubescence density using MLM. A. Density distribution of 954 

pubescence density. B. Manhattan plots for pubescence density. Negative log10 955 

P-values from a genome-wide scan are plotted against SNP positions of 20 956 

chromosomes. C. Quantile-quantile plot for pubescence density. The horizontal red 957 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 958 

significant threshold are colored in red. 959 

Figure S8 GWAS of defollation using MLM. A. Density distribution of defollation. B. 960 

Manhattan plots for defollation. Negative log10 P-values from a genome-wide scan are 961 

plotted against SNP positions of 20 chromosomes. C. Quantile-quantile plot for 962 

defollation. The horizontal red line indicates the significant threshold (10-5). 963 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428693doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428693


 37

Trait-associated SNPs above the significant threshold are colored in red. 964 

Figure S9 GWAS of inflorenscence length using MLM. A. Density distribution of 965 

inflorenscence length. B. Manhattan plots for inflorenscence length. Negative log10 966 

P-values from a genome-wide scan are plotted against SNP positions of 20 967 

chromosomes. C. Quantile-quantile plot for inflorenscence length. The horizontal red 968 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 969 

significant threshold are colored in red. 970 

Figure S10 GWAS of leaf shape using MLM. A. Density distribution of leaf shape. B. 971 

Manhattan plots for leaf shape. Negative log10 P-values from a genome-wide scan are 972 

plotted against SNP positions of 20 chromosomes. C. Quantile-quantile plot for leaf 973 

shape. The horizontal red line indicates the significant threshold (10-5). 974 

Trait-associated SNPs above the significant threshold are colored in red. 975 

Figure S11 GWAS of leaflet size using MLM. A. Density distribution of leaflet size. 976 

B. Manhattan plots for leaflet size. Negative log10 P-values from a genome-wide scan 977 

are plotted against SNP positions of 20 chromosomes. C. Quantile-quantile plot for 978 

leaflet size. The horizontal red line indicates the significant threshold (10-5). 979 

Trait-associated SNPs above the significant threshold are colored in red. 980 

Figure S12 GWAS of lodging using MLM. A. Density distribution of lodging. B. 981 

Manhattan plots for lodging. Negative log10 P-values from a genome-wide scan are 982 

plotted against SNP positions of 20 chromosomes. C. Quantile-quantile plot for 983 

lodging. The horizontal red line indicates the significant threshold (10-5). 984 

Trait-associated SNPs above the significant threshold are colored in red. 985 
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Figure S13 GWAS of number of nodes on main stem using MLM. A. Density 986 

distribution of number of nodes on main stem. B. Manhattan plots for number of 987 

nodes on main stem. Negative log10 P-values from a genome-wide scan are plotted 988 

against SNP positions of 20 chromosomes. C. Quantile-quantile plot for number of 989 

nodes on main stem. The horizontal red line indicates the significant threshold (10-5). 990 

Trait-associated SNPs above the significant threshold are colored in red. 991 

Figure S14 GWAS of plant height using MLM. A. Density distribution of plant 992 

height. B. Manhattan plots for plant height. Negative log10 P-values from a 993 

genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 994 

Quantile-quantile plot for plant height. The horizontal red line indicates the significant 995 

threshold (10-5). Trait-associated SNPs above the significant threshold are colored in 996 

red. 997 

Figure S15 GWAS of plant type using MLM. A. Density distribution of plant type. B. 998 

Manhattan plots for plant type. Negative log10 P-values from a genome-wide scan are 999 

plotted against SNP positions of 20 chromosomes. C. Quantile-quantile plot for plant 1000 

type. The horizontal red line indicates the significant threshold (10-5). Trait-associated 1001 

SNPs above the significant threshold are colored in red. 1002 

Figure S16 GWAS of stem termination using MLM. A. Density distribution of 1003 

podding habit. B. Manhattan plots for stem termination. Negative log10 P-values from 1004 

a genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1005 

Quantile-quantile plot for stem termination. The horizontal red line indicates the 1006 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1007 
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colored in red. 1008 

Figure S17 GWAS of seed crack using MLM. A. Density distribution of seed crack. 1009 

B. Manhattan plots for seed crack. Negative log10 P-values from a genome-wide scan 1010 

are plotted against SNP positions of 20 chromosomes. C. Quantile-quantile plot for 1011 

seed crack. The horizontal red line indicates the significant threshold (10-5). 1012 

Trait-associated SNPs above the significant threshold are colored in red. 1013 

Figure S18 GWAS of stem diameter using MLM. A. Density distribution of stem 1014 

diameter. B. Manhattan plots for stem diameter. Negative log10 P-values from a 1015 

genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1016 

Quantile-quantile plot for stem diameter. The horizontal red line indicates the 1017 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1018 

colored in red. 1019 

Figure S19 GWAS of stem intension using MLM. A. Density distribution of stem 1020 

intension. B. Manhattan plots for stem intension. Negative log10 P-values from a 1021 

genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1022 

Quantile-quantile plot for stem intension. The horizontal red line indicates the 1023 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1024 

colored in red. 1025 

Figure S20 GWAS of pubescence color using MLM. A. Density distribution of 1026 

pubescence color. B. Manhattan plots for pubescence color. Negative log10 P-values 1027 

from a genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1028 

Quantile-quantile plot for pubescence color. The horizontal red line indicates the 1029 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428693doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428693


 40

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1030 

colored in red. 1031 

Figure S21 GWAS of flower color using MLM. A. Density distribution of flower 1032 

color. B. Manhattan plots for flower color. Negative log10 P-values from a 1033 

genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1034 

Quantile-quantile plot for flower color. The horizontal red line indicates the 1035 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1036 

colored in red. 1037 

Figure S22 GWAS of leaf color using MLM. A. Density distribution of leaf color. B. 1038 

Manhattan plots for leaf color. Negative log10 P-values from a genome-wide scan are 1039 

plotted against SNP positions of 20 chromosomes. C. Quantile-quantile plot for leaf 1040 

color. The horizontal red line indicates the significant threshold (10-5). 1041 

Trait-associated SNPs above the significant threshold are colored in red. 1042 

Figure S23 GWAS of mature pod color using MLM. A. Density distribution of 1043 

mature pod color. B. Manhattan plots for mature pod color. Negative log10 P-values 1044 

from a genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1045 

Quantile-quantile plot for mature pod color. The horizontal red line indicates the 1046 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1047 

colored in red. 1048 

Figure S24 GWAS of seed coat luster using MLM. A. Density distribution of seed 1049 

coat luster. B. Manhattan plots for seed coat luster. Negative log10 P-values from a 1050 

genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1051 
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Quantile-quantile plot for seed coat luster. The horizontal red line indicates the 1052 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1053 

colored in red. 1054 

Figure S25 GWAS of isoflavone content using MLM. A. Density distribution of 1055 

isoflavone content. B. Manhattan plots for isoflavone content. Negative log10 P-values 1056 

from a genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1057 

Quantile-quantile plot for isoflavone content. The horizontal red line indicates the 1058 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1059 

colored in red. 1060 

Figure S26 GWAS of linoleic acid content using MLM. A. Density distribution of 1061 

linoleic acid content. B. Manhattan plots for linoleic acid content. Negative log10 1062 

P-values from a genome-wide scan are plotted against SNP positions of 20 1063 

chromosomes. C. Quantile-quantile plot for linoleic acid content. The horizontal red 1064 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 1065 

significant threshold are colored in red. 1066 

Figure S27 GWAS of linolenic acid content using MLM. A. Density distribution of 1067 

linolenic acid content. B. Manhattan plots for linolenic acid content. Negative log10 1068 

P-values from a genome-wide scan are plotted against SNP positions of 20 1069 

chromosomes. C. Quantile-quantile plot for linolenic acid content. The horizontal red 1070 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 1071 

significant threshold are colored in red. 1072 

Figure S28 GWAS of oleic acid content using MLM. A. Density distribution of oleic 1073 
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acid content. B. Manhattan plots for oleic acid content. Negative log10 P-values from a 1074 

genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1075 

Quantile-quantile plot for oleic acid content. The horizontal red line indicates the 1076 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1077 

colored in red. 1078 

Figure S29 GWAS of palmitic acid content using MLM. A. Density distribution of 1079 

palmitic acid content. B. Manhattan plots for palmitic acid content. Negative log10 1080 

P-values from a genome-wide scan are plotted against SNP positions of 20 1081 

chromosomes. C. Quantile-quantile plot for palmitic acid content. The horizontal red 1082 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 1083 

significant threshold are colored in red. 1084 

Figure S30 GWAS of crude protein content using MLM. A. Density distribution of 1085 

crude protein content. B. Manhattan plots for crude protein content. Negative log10 1086 

P-values from a genome-wide scan are plotted against SNP positions of 20 1087 

chromosomes. C. Quantile-quantile plot for crude protein content. The horizontal red 1088 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 1089 

significant threshold are colored in red. 1090 

Figure S31 GWAS of alanine content using MLM. A. Density distribution of alanine 1091 

content. B. Manhattan plots for alanine content. Negative log10 P-values from a 1092 

genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1093 

Quantile-quantile plot for alanine content. The horizontal red line indicates the 1094 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1095 
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colored in red. 1096 

Figure S32 GWAS of arginine content using MLM. A. Density distribution of 1097 

arginine content. B. Manhattan plots for arginine content. Negative log10 P-values 1098 

from a genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1099 

Quantile-quantile plot for arginine content. The horizontal red line indicates the 1100 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1101 

colored in red. 1102 

Figure S33 GWAS of aspartic acid content using MLM. A. Density distribution of 1103 

aspartic acid content. B. Manhattan plots for aspartic acid content. Negative log10 1104 

P-values from a genome-wide scan are plotted against SNP positions of 20 1105 

chromosomes. C. Quantile-quantile plot for aspartic acid content. The horizontal red 1106 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 1107 

significant threshold are colored in red. 1108 

Figure S34 GWAS of glutamate content using MLM. A. Density distribution of 1109 

glutamate content. B. Manhattan plots for glutamate content. Negative log10 P-values 1110 

from a genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1111 

Quantile-quantile plot for glutamate content. The horizontal red line indicates the 1112 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1113 

colored in red. 1114 

Figure S35 GWAS of glycine content using MLM. A. Density distribution of glycine 1115 

content. B. Manhattan plots for glycine content. Negative log10 P-values from a 1116 

genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1117 
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Quantile-quantile plot for glycine content. The horizontal red line indicates the 1118 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1119 

colored in red. 1120 

Figure S36 GWAS of histidine content using MLM. A. Density distribution of 1121 

histidine content. B. Manhattan plots for histidine content. Negative log10 P-values 1122 

from a genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1123 

Quantile-quantile plot for histidine content. The horizontal red line indicates the 1124 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1125 

colored in red. 1126 

Figure S37 GWAS of isoleucine content using MLM. A. Density distribution of 1127 

isoleucine content. B. Manhattan plots for isoleucine content. Negative log10 P-values 1128 

from a genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1129 

Quantile-quantile plot for isoleucine content. The horizontal red line indicates the 1130 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1131 

colored in red. 1132 

Figure S38 GWAS of leucine content using MLM. A. Density distribution of leucine 1133 

content. B. Manhattan plots for leucine content. Negative log10 P-values from a 1134 

genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1135 

Quantile-quantile plot for leucine content. The horizontal red line indicates the 1136 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1137 

colored in red. 1138 

Figure S39 GWAS of lysine content using MLM. A. Density distribution of lysine 1139 
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content. B. Manhattan plots for lysine content. Negative log10 P-values from a 1140 

genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1141 

Quantile-quantile plot for lysine content. The horizontal red line indicates the 1142 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1143 

colored in red. 1144 

Figure S40 GWAS of methionine content using MLM. A. Density distribution of 1145 

methionine content. B. Manhattan plots for methionine content. Negative log10 1146 

P-values from a genome-wide scan are plotted against SNP positions of 20 1147 

chromosomes. C. Quantile-quantile plot for methionine content. The horizontal red 1148 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 1149 

significant threshold are colored in red. 1150 

Figure S41 GWAS of phenylalanine content using MLM. A. Density distribution of 1151 

phenylalanine content. B. Manhattan plots for phenylalanine content. Negative log10 1152 

P-values from a genome-wide scan are plotted against SNP positions of 20 1153 

chromosomes. C. Quantile-quantile plot for phenylalanine content. The horizontal red 1154 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 1155 

significant threshold are colored in red. 1156 

Figure S42 GWAS of proline content using MLM. A. Density distribution of proline 1157 

content. B. Manhattan plots for proline content. Negative log10 P-values from a 1158 

genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1159 

Quantile-quantile plot for proline content. The horizontal red line indicates the 1160 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1161 
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colored in red. 1162 

Figure S43 GWAS of serine content using MLM. A. Density distribution of serine 1163 

content. B. Manhattan plots for serine content. Negative log10 P-values from a 1164 

genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1165 

Quantile-quantile plot for serine content. The horizontal red line indicates the 1166 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1167 

colored in red. 1168 

Figure S44 GWAS of threonine content using MLM. A. Density distribution of 1169 

threonine content. B. Manhattan plots for threonine content. Negative log10 P-values 1170 

from a genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1171 

Quantile-quantile plot for threonine content. The horizontal red line indicates the 1172 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1173 

colored in red. 1174 

Figure S45 GWAS of tyrosine content using MLM. A. Density distribution of 1175 

tyrosine content. B. Manhattan plots for tyrosine content. Negative log10 P-values 1176 

from a genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1177 

Quantile-quantile plot for tyrosine content. The horizontal red line indicates the 1178 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1179 

colored in red. 1180 

Figure S46 GWAS of valine content using MLM. A. Density distribution of valine 1181 

content. B. Manhattan plots for valine content. Negative log10 P-values from a 1182 

genome-wide scan are plotted against SNP positions of 20 chromosomes. C. 1183 
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Quantile-quantile plot for valine content. The horizontal red line indicates the 1184 

significant threshold (10-5). Trait-associated SNPs above the significant threshold are 1185 

colored in red. 1186 

Figure S47 GWAS of total amino acids content using MLM. A. Density distribution 1187 

of total amino acids content. B. Manhattan plots for total amino acids content. 1188 

Negative log10 P-values from a genome-wide scan are plotted against SNP positions 1189 

of 20 chromosomes. C. Quantile-quantile plot for total amino acids content. The 1190 

horizontal red line indicates the significant threshold (10-5). Trait-associated SNPs 1191 

above the significant threshold are colored in red. 1192 

Figure S48 GWAS of hundred grain weight using MLM. A. Density distribution of 1193 

one hundred seed weight. B. Manhattan plots for hundred grain weight. Negative 1194 

log10 P-values from a genome-wide scan are plotted against SNP positions of 20 1195 

chromosomes. C. Quantile-quantile plot for hundred grain weight. The horizontal red 1196 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 1197 

significant threshold are colored in red. 1198 

Figure S49 GWAS of pod number per plant using MLM. A. Density distribution of 1199 

pod number per plant. B. Manhattan plots for pod number per plant. Negative log10 1200 

P-values from a genome-wide scan are plotted against SNP positions of 20 1201 

chromosomes. C. Quantile-quantile plot for pod number per plant. The horizontal red 1202 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 1203 

significant threshold are colored in red. 1204 

Figure S50 GWAS of pod size using MLM. A. Density distribution of pod size. B. 1205 
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Manhattan plots for pod size. Negative log10 P-values from a genome-wide scan are 1206 

plotted against SNP positions of 20 chromosomes. C. Quantile-quantile plot for pod 1207 

size. The horizontal red line indicates the significant threshold (10-5). Trait-associated 1208 

SNPs above the significant threshold are colored in red. 1209 

Figure S51 GWAS of seed number per plant using MLM. A. Density distribution of 1210 

seed number per plant. B. Manhattan plots for seed number per plant. Negative log10 1211 

P-values from a genome-wide scan are plotted against SNP positions of 20 1212 

chromosomes. C. Quantile-quantile plot for seed number per plant. The horizontal red 1213 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 1214 

significant threshold are colored in red. 1215 

Figure S52 GWAS of seed number per pod using MLM. A. Density distribution of 1216 

seed number per pod. B. Manhattan plots for seed number per pod. Negative log10 1217 

P-values from a genome-wide scan are plotted against SNP positions of 20 1218 

chromosomes. C. Quantile-quantile plot for seed number per pod. The horizontal red 1219 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 1220 

significant threshold are colored in red. 1221 

Figure S53 GWAS of seed size using MLM. A. Density distribution of seed size. B. 1222 

Manhattan plots for seed size. Negative log10 P-values from a genome-wide scan are 1223 

plotted against SNP positions of 20 chromosomes. C. Quantile-quantile plot for seed 1224 

size. The horizontal red line indicates the significant threshold (10-5). Trait-associated 1225 

SNPs above the significant threshold are colored in red. 1226 

Figure S54 GWAS of seed weight per plant using MLM. A. Density distribution of 1227 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.28.428693doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428693


 49

seed weight per plant. B. Manhattan plots for seed weight per plant. Negative log10 1228 

P-values from a genome-wide scan are plotted against SNP positions of 20 1229 

chromosomes. C. Quantile-quantile plot for seed weight per plant. The horizontal red 1230 

line indicates the significant threshold (10-5). Trait-associated SNPs above the 1231 

significant threshold are colored in red. 1232 

Figure S55 Gene expression validation of different haplotypes/phenotypes for five 1233 

candidate genes. A. Phenotype distribution (left) and expression level (right) of GL3 1234 

for different haplotypes. B. Phenotype distribution (left) and expression level (right) 1235 

of GSTL3 for different haplotypes. C. Phenotype distribution (left) and expression 1236 

level (right) of GSTT1b for different haplotypes. D. Phenotype distribution (left) and 1237 

expression level (right) of CKX3 for different haplotypes. E. Phenotype distribution 1238 

(left) and expression level (right) of CYP85A2 for different haplotypes.  1239 

  1240 

 1241 
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